Open Access Open Access  Restricted Access Subscription or Fee Access

Structure and Electrochemical Impedance of LiNi\(_{x}\)Mn\(_{2 - x}\)O\(_{4}\)

Ta Anh Tan, Nguyen Si Hieu, Le Ha Chi, Dang Tran Chien, Le Dinh Trong, Pham Duy Long


Ni-substitution spinel LiNixMn2−xO4 (x = 0, 0.1, 0.2) materials were synthesized by the sol--gel method. The structure and  morphology of the samples were characterized by the X-ray diffraction (XRD)  and the scanning electron microscopy. The ac conduction of the materials was  investigated by electrochemical impedance spectroscopy (EIS) measurements.  The refinement results showed that the substitution of Ni decreased the  lattice constant and Mn--O distance, while increased Li--O bond length and  16c octahedral volume. The EIS results confirmed the decrease of  conductivity with increasing Ni substitution content. Based on XRD and EIS  results, the relationship between the crystal structure and electrochemical  behavior of the materials was discussed and explained.


Lithium ion battery, spinel manganate cathode material, Rietveld refinement, Electrochemical impedance


T. Ohzuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc. 137 (1990) 769–775.

R. Gummow, A. De Kock, M. Thackeray, Solid State Ionics 69 (1994) 59–67.

D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143 (1996) 2204–2211.

C.Y. Ouyang, S.Q. Shi, M.S. Lei, J. Alloys Compd. 474 (1–2) (2009) 370–374.

Y. Xia, T. Sakai, T. Fujieda, X. Yang, X. Sun, Z. Ma, et al., J. Electrochem. Soc. 148 (2001) A723–A729.

M. D. Bhatt and C. O'Dwyer, Phys. Chem. Chem. Phys. 17 (2015) 4799-4844.

K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68 (1997) 604–608.

R. Alcantara, M. Jaraba, P. Lavela, J. Tirado, Electrochim. Acta 47 (2002) 1829–1835.

M. M. Thackeray, A. de Kock, M. H. Rossouw, D. C. Liles, R. Bittihn and D. Hoge, J. Electrochem. Soc. 139 (1992) 363.

F. Le Cras, P. Strobel, M. Anne, D. Bloch, J. P. Soupart and J. C. Rousche, Eur. J. Solid State Inorg. Chem. 33 (1996) 67.

H. Berg, K. Goransson, B. Nolang and J. O. Thomas, J. Mater. Chem. 10 (2000) 1437-1441.

J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek, R. Dziembaj, Solid State Ionics 171 (3–4) (2004) 215–227.

M. A. Kebede, N. Kunjuzwa, C. J. Jafta, M. K. Mathe, K. I. Ozoemena, Electrochim. Acta 128 (2014) 172–177.

J. Rodríguez-Carvajal, FullProf Program: Rietveld, Profile Matching and Integrated Intensities Refinement of x-Ray and/or Neutron Data (Powder and/or Single-Crystal). Laboratoire Leon Brillouin (CEA-CNRS), 2007.

K. Momma, F. Izumi, J. Appl. Cryst. 41 (2008) 653-658.

Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao. and J. R. Dahn, J. Electrochem. Soc. 144 (1) (1997) 205-213.

Bjork, H.; Dabkowska, H.; Greedan, J. E.; Gustafsson, T.; Thomas, J. O. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57 (2001) 331–332.

Martinez, S.; Sobrados, I.; Tonti, D.; Amarilla, J. M.; Sanz, J. Phys. Chem. Chem. Phys. 16 (2014) 3282–3291.

Y. Wei, K. B. Kim, G. Chen, Electrochim. Acta 51 (16) (2006) 3365–3373.

M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 18 (4) 1983 461-472.

N. Ishizawa, K. Tateishi, J. Ceram. Soc. Jpn. 117 (2009) 6-14.

K. Hoang, J. Mater. Chem. A 2 (2014) 18271-18280.

F.X. Wang, S.Y. Xiao, Y. Shia, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Electrochim. Acta 93 (2013) 301–306.

Scully J.R., Silverman D.C., Kendig M.W., Electrochemical impedance: analysis and interpretation. American Society for Testing and Materials, Philadelphia 1993.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Published by Vietnam Academy of Science and Technology