Structure and Electrochemical Impedance of LiNi\(_{x}\)Mn\(_{2 - x}\)O\(_{4}\)

Ta Anh Tan, Nguyen Si Hieu, Le Ha Chi, Dang Tran Chien, Le Dinh Trong, Pham Duy Long
Author affiliations

Authors

  • Ta Anh Tan Institute of Materials Science, Vietnam academy of science and technology 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Si Hieu Institute of Materials Science, Vietnam academy of science and technology
  • Le Ha Chi Institute of Materials Science, Vietnam academy of science and technology 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Dang Tran Chien Hanoi University of Natural Resources and Environment 41A-Phu Dien, Bac Tu Liem, Hanoi, Vietnam
  • Le Dinh Trong Hanoi Pedagogical University No. 2 32-Nguyen Van Linh, Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam
  • Pham Duy Long Institute of Materials Science, Vietnam academy of science and technology 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/26/4/8953

Keywords:

Lithium ion battery, spinel manganate cathode material, Rietveld refinement, Electrochemical impedance

Abstract

Ni-substitution spinel LiNixMn2−xO4 (x = 0, 0.1, 0.2) materials were synthesized by the sol--gel method. The structure and  morphology of the samples were characterized by the X-ray diffraction (XRD)  and the scanning electron microscopy. The ac conduction of the materials was  investigated by electrochemical impedance spectroscopy (EIS) measurements.  The refinement results showed that the substitution of Ni decreased the  lattice constant and Mn--O distance, while increased Li--O bond length and  16c octahedral volume. The EIS results confirmed the decrease of  conductivity with increasing Ni substitution content. Based on XRD and EIS  results, the relationship between the crystal structure and electrochemical  behavior of the materials was discussed and explained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T. Ohzuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc. 137 (1990) 769–775. DOI: https://doi.org/10.1149/1.2086552

R. Gummow, A. De Kock, M. Thackeray, Solid State Ionics 69 (1994) 59–67. DOI: https://doi.org/10.1016/0167-2738(94)90450-2

D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143 (1996) 2204–2211. DOI: https://doi.org/10.1149/1.1836981

C.Y. Ouyang, S.Q. Shi, M.S. Lei, J. Alloys Compd. 474 (1–2) (2009) 370–374. DOI: https://doi.org/10.1016/j.jallcom.2008.06.123

Y. Xia, T. Sakai, T. Fujieda, X. Yang, X. Sun, Z. Ma, et al., J. Electrochem. Soc. 148 (2001) A723–A729. DOI: https://doi.org/10.1149/1.1376117

M. D. Bhatt and C. O'Dwyer, Phys. Chem. Chem. Phys. 17 (2015) 4799-4844. DOI: https://doi.org/10.1039/C4CP05552G

K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68 (1997) 604–608. DOI: https://doi.org/10.1016/S0378-7753(96)02590-6

R. Alcantara, M. Jaraba, P. Lavela, J. Tirado, Electrochim. Acta 47 (2002) 1829–1835. DOI: https://doi.org/10.1016/S0013-4686(02)00024-5

M. M. Thackeray, A. de Kock, M. H. Rossouw, D. C. Liles, R. Bittihn and D. Hoge, J. Electrochem. Soc. 139 (1992) 363. DOI: https://doi.org/10.1149/1.2069222

F. Le Cras, P. Strobel, M. Anne, D. Bloch, J. P. Soupart and J. C. Rousche, Eur. J. Solid State Inorg. Chem. 33 (1996) 67.

H. Berg, K. Goransson, B. Nolang and J. O. Thomas, J. Mater. Chem. 10 (2000) 1437-1441. DOI: https://doi.org/10.1039/a908746j

J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek, R. Dziembaj, Solid State Ionics 171 (3–4) (2004) 215–227. DOI: https://doi.org/10.1016/j.ssi.2004.04.022

M. A. Kebede, N. Kunjuzwa, C. J. Jafta, M. K. Mathe, K. I. Ozoemena, Electrochim. Acta 128 (2014) 172–177. DOI: https://doi.org/10.1016/j.electacta.2013.11.080

J. Rodríguez-Carvajal, FullProf Program: Rietveld, Profile Matching and Integrated Intensities Refinement of x-Ray and/or Neutron Data (Powder and/or Single-Crystal). Laboratoire Leon Brillouin (CEA-CNRS), 2007.

K. Momma, F. Izumi, J. Appl. Cryst. 41 (2008) 653-658. DOI: https://doi.org/10.1107/S0021889808012016

Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao. and J. R. Dahn, J. Electrochem. Soc. 144 (1) (1997) 205-213. DOI: https://doi.org/10.1149/1.1837386

Bjork, H.; Dabkowska, H.; Greedan, J. E.; Gustafsson, T.; Thomas, J. O. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57 (2001) 331–332. DOI: https://doi.org/10.1107/S0108270100019430

Martinez, S.; Sobrados, I.; Tonti, D.; Amarilla, J. M.; Sanz, J. Phys. Chem. Chem. Phys. 16 (2014) 3282–3291. DOI: https://doi.org/10.1039/c3cp54386b

Y. Wei, K. B. Kim, G. Chen, Electrochim. Acta 51 (16) (2006) 3365–3373. DOI: https://doi.org/10.1016/j.electacta.2005.09.035

M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 18 (4) 1983 461-472. DOI: https://doi.org/10.1016/0025-5408(83)90138-1

N. Ishizawa, K. Tateishi, J. Ceram. Soc. Jpn. 117 (2009) 6-14. DOI: https://doi.org/10.2109/jcersj2.117.6

K. Hoang, J. Mater. Chem. A 2 (2014) 18271-18280. DOI: https://doi.org/10.1039/C4TA04116J

F.X. Wang, S.Y. Xiao, Y. Shia, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Electrochim. Acta 93 (2013) 301–306. DOI: https://doi.org/10.1016/j.electacta.2013.01.106

Scully J.R., Silverman D.C., Kendig M.W., Electrochemical impedance: analysis and interpretation. American Society for Testing and Materials, Philadelphia 1993. DOI: https://doi.org/10.1520/STP1188-EB

Downloads

Published

06-03-2017

How to Cite

[1]
T. Anh Tan, N. Si Hieu, L. Ha Chi, D. Tran Chien, L. Dinh Trong and P. Duy Long, Structure and Electrochemical Impedance of LiNi\(_{x}\)Mn\(_{2 - x}\)O\(_{4}\), Comm. Phys. 26 (2017) 361. DOI: https://doi.org/10.15625/0868-3166/26/4/8953.

Issue

Section

Papers
Received 01-12-2016
Accepted 17-02-2017
Published 06-03-2017