Development of Novel 3d Printable Graphene-Based Composite Towards Fabrication of Thin Film Electrode Material

Le T. M. Hanh, Do. T. Thuy, Hoang T. Dung, Doan T. Tung, Vu X. Minh, Pham T. Lan, Le T. Lu, Tran D. Lam, Nguyen T. Dung

Abstract


Graphene/polymer composite thin film electrodes have many important applications, but the fabrication of these electrodes is often difficult because of poor processability of graphene. This paper presents the primary results on using 3D printing technique for thin film electrode preparation from graphene-based composite ink. The printing ink was synthesized from graphene oxide (GO), polyvinyl alcohol (PVA) as a binder and stabilizer, and ascorbic acid (AA) as a reducing agent. The measured zeta potential value showed that PVA can make GO ink more stable, the absolute value of zeta potential increased from 10.1 mV (without PVA) to 31.4 mV (with 12 wt. % PVA). The thin film electrodes can be easily printed using GO/PVA/AA composite ink, and obtained voltammograms recorded on the surface of these electrodes in 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] solution clearly indicated the GO reduction by AA. The best electrochemical properties of printed electrodes were founded in the case of composite ink with wt/wt ratio GO:PVA:AA = 80:12:8. The cyclic voltammetric results demonstrated the linear dependence of the anodic and cathodic signals of redox couple [Fe(CN)6]4-/K3[Fe(CN)6]3- with the   square root of scan rate, indicating a reversible redox reaction on the electrode surface. The thin films printed from GO/PVA/AA composite ink can be used as electrode material for diverse applications in electrochemistry.

Keywords


3D printable ink, graphene composite, polyvinyl alcohol, ascorbic acid, electrode material

References


Wongbong Choi, Jo-won Lee. Graphene: Synthesis and Applications, CRC Press, 2011.

D. Li, R.B. Kaner, Science 320 (2008) 1170-1171.

Maher F. El-Kady, Richard B. Kaner, Nature Communications 4 (2013) 1475.

Yen M. Y., Hsieh C-K., Teng C-C., Hsiao M.-C., Liu P.-L., Ma C-C. M., Tsai M.-C., Tsai C-H., Lin Y.-R., & Chou T.-Y., RSC Advances 2 (2012) 2725.

Pumera M., Ambrosi A., Bonanni A., Chng E. L. K., & Poh H. I., Trends Analyst. Chem. 29 (2010) 954.

Shannon M. Notley, Drew R. Evans, Advances in Colloid and Interface Science 209 (2014) 196.

T. Dung Nguyen, T.T. Huyen Dang, Hoang Thai, L. Huy Nguyen, D. Lam Tran, B. Piro, M.C. Pham, Electroanalysis 28 (2016) 1907.

F. Zhou, S. Han, Q. Qian, Y. Zhu, Chemical Physics Letters, 728 (2019) 6.

Hoang T. Dung, Ngo T. Dung, Trinh Q. Dung, Doan T. Tung, Nguyen T. Yen, Le T.T. Tam, Tran V. Thu, Phan N. Hong, Le T. Lu, Vietnam Journal of Science and Technology 56 (5) (2018) 574.

Doan T. Tung, Le T.T Tam, Hoang T. Dung, Ngo T. Dung, Hoang T. Ha, Nguyen T. Dung, Thai Hoang, Tran D. Lam, Dang T. Chien, Phan N. Hong, Phan N. Minh, Nguyen V. Quynh, Le T. Lu, Journal of Electronic Materials, doi. 10.1007/s11664-020-08165-z.

F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, Nano energy 40 (2017) 418.

Dua V., Surwade S.P., Ammu S., Agnihotra S.R., Jain S., Roberts K.E., et al, Angewandte Chemie International Edition 122(12) (2010) 2154.

L. Baptista-Pires, A. Escosura-Muniz, M. Balsells, J.C. Zuaznabar-Gardona and A. Merkoci, Electrochemistry communications 98 (2019) 6.

C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Nano Letters 6 (2016) 3448.

E. García‐Tuñon, S. Barg, J. Franco, R. Bell, S. Eslava, E. D'Elia, F. Guitian, E. Saiz, Advanced Materials 27 (2015) 1688.

Q. Ran, S. Wu, J. Chen, Polymer-Plastics Technology and Engineering 46 (2007) 1117.

X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules 43 (5) (2010) 2357.

P.B. Pawar, S. Shukla, S. Saxena, Journal of Power Sources 321 (2016) 102.

D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS nano, 4 (2010) 4806.

I. Svancara; K. Kalcher; A. Walcarius; K. Vytras, Analysis with Carbon Paste Electrodes, CRS Press, Francis & Taylor, 2012.

Fritz Scholz (Ed.), Electroanalytical Methods: Guide to Experiments and Applications, Springer-Verlag Berlin Heidelberg, 2010.




DOI: https://doi.org/10.15625/0868-3166/30/4/15447 Display counter: Abstract : 29 views.

Refbacks

  • There are currently no refbacks.




Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by