Experimental Verification of a THz Multi-band Metamaterial Absorber

Van Huynh Tran, Thanh Tung Nguyen, Xuan Khuyen Bui, Dinh Lam Vu, Son Tung Bui, Thi Hong Hiep Le


Multi-band metamaterial absorbers have been of great interest owing to their potentials for a wide range of communicating, sensing, imaging, and energy harvesting applications. In this work, we experimentally investigate a four-band metamaterial absorber operating at THz frequencies. The metamaterials are fabricated using the maskless UV photolithography and e-beam evaporation techniques. The absorption spectra of the proposed absorber are measured using the micro-Fourier transformed infrared spectroscopy. It was demonstrated that multi-band absorption behavior originates from different individual metamaterial resonators. The thickness of the dielectric spacer plays a key role in optimizing the absorption performance, in line with the predicted results on single-band THz absorbers.


metamaterial absorbers, multi-band, THz frequencies


Carlo Sirtori, Bridge for the terahertz gap, Nature 417, (2002) 132.

Gwyn P Williams, Filling the THz gap—high power sources and applications, Rep. Prog. Phys. 69, (2006) 301.

W. Xu, L. Xie, and Y. Ying, Mechanisms and applications of terahertz metamaterial sensing: a review, Nanoscale 9, (2017) 13864.

N. T. Tung, Y. P. Lee, and V. D. Lam, Transmission properties of electromagnetic metamaterials: From split-ring resonator to fishnet structure, Opt. Rev. 16, (2009) 578.

N. T. Tung, T. X. Hoai, V. D. Lam, and Y. P. Lee, Comprehensive effective-medium analysis for the transmission properties of combined metamaterials, Comput. Mat. Sci. 49, (2010) 284.

N. T. Tung and T. Tanaka, Characterizations of an infrared polarization-insensitive metamaterial perfect absorber and its potential in sensing applications, Photon. Nanostruct.: Fund. Appl. 28, (2018) 100.

M. Lapke, T. Mussenbrock, R. P. Brinkmann, C. Scharwitz, M. Boke, J. Winter, Modeling and simulation of the plasma absorption probe, Appl. Phys. Lett. 90, (2007) 121502.

J. Huo, L. Wang, H. Yu, Polymeric nanocomposites for electromagnetic wave absorption, J. Mater. Sci. 44, (2009) 3917.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100, (2008) 207402.

A. Ishikawa and T. Tanaka, Metamaterial absorbers for infrared detection of molecular self-assembled monolayers, Sci. Reports 5, (2015) 12570.

C. M. Watts, X. Liu, W. J. Padilla, Metamaterial electromagnetic wave absorbers, Adv. Mat. 24, (2012) OP98.

Li Huang and Hou-Tong Chen, A Brief review on terahertz metamaterial perfect absorbers, Terahertz Science and Technology 6, (2013) 26.

N. T. Hien, B. S. Tung, N. T. Tuan, N. T. Tung, Y. P. Lee, N. M. An, and V. D. Lam, Metamaterial-based perfect absorber: polarization insensitivity and broadband, Adv. Nat. Sci.: Nanosci. Nanotech. 5, (2014) 025013.

D. H. Luu, N. V. Cuong, L. D. Hai, N. H. Tung, T. M. Cuong, L. D. Tuyen and V. D. Lam, Broadband metamaterial perfect absorber obtained by coupling effect, Journal of Nonlinear Optical Physics and Materials 26, (2017) 1750036.

T. M. Cuong, L. D. Hai, P. V. Hai, D. H. Tung, L. D. Tuyen, D. H. Luu and V. D. Lam, Controlled Defect Based Ultra Broadband Full-sized Metamaterial Absorber, Scientific Reports 8, (2018) 9523.

B. X. Wang, Y. H. He, P. C. Lou and W. H. Xing, Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application, Nanoscale Adv 2, (2020) 763–769.

T. V. Huynh, B. X. Khuyen, B. S. Tung, S. T. Ngo, V. D. Lam, and N. T. Tung, Controlling the absorption strength in bidirectional terahertz metamaterial absorbers with patterned graphene, Comput. Mat. Sci. 166, (2019) 276.

U. T. D. Thuy, N. T. Thuy, N. T. Tung, E. Janssens, and N. Q. Liem, Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection, APL Mater. 7, (2019) 071102.

P. T. Trang, B. H. Nguyen, D. H. Tiep, L. M. Thuy, V. D. Lam, and N. T. Tung, Symmetry-breaking metamaterials enabling broadband negative permeability, J. Elec. Mater. 45, (2016) 2547.

B. S. Tung, N. V. Dung, B. X. Khuyen, N. T. Tung, P. Lievens, Y. P. Lee, and V. D. Lam, Thermally tunable magnetic metamaterial at THz frequencies, J. Opt. 15, (2013) 075101.

N. T. Hien, L. N. Le, P. T. Trang, B. S. Tung, N. D. Viet, P. T. Duyen, N. M. Thang, D. T. Viet, Y. P. Lee, V. D. Lam, and N. T. Tung, Characterization of a thermo-tunable broadband fishnet metamaterial at THz frequencies, Comp. Mat. Sci. 103, (2015) 189.

L. N. Le, N. M. Thang, L. M. Thuy, and N. T. Tung, Hybrid semiconductor-dielectric metamaterial modulation for switchable bidirectional THz absorbers, Opt. Comm. 383, (2016) 244.

C.Z. Tan, J. Non-Cryst. Solids 223 (1998) 158.

V. D. Lam, N. T. Tung, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, Effect of the dielectric layer thickness on the electromangetic response of cut-wire pair and combined structures, J. Phys. D: Appl. Phys. 42, (2009) 115404.

N. T. Tung, V. D. Lam, M. H. Cho, J. W. Park, W. H. Jang, and Y. P. Lee, Influence of the dielectric-spacer thickness on the left-handed behavior of fishnet metamaterial structure, Photon. Nanostruct.: Fund. Appl. 7, (2009) 206.

DOI: https://doi.org/10.15625/0868-3166/30/4/15081 Display counter: Abstract : 119 views.


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by