Simulation Study of Mid-infrared Supercontinuum Generation at Normal Dispersion Regime in Chalcogenide Suspended-core Fiber Infiltrated with Water

Bien Chu Van, Mai Dang Ngoc, Van Cao Long, Hoang Nguyen Tuan, Hieu Le Van
Author affiliations

Authors

  • Bien Chu Van Hong Duc University
  • Mai Dang Ngoc Hong Duc University
  • Van Cao Long University of Zielona Góra
  • Hoang Nguyen Tuan Military College of Special Forces
  • Hieu Le Van Hong Duc University

DOI:

https://doi.org/10.15625/0868-3166/30/2/14857

Keywords:

Suspended-core, normal dispersion, supercontinuum generation, water.

Abstract

We report simulation results of supercontinuum generation in the suspended-core optical fibers made of chalcogenide (As2S3) infiltrated with water at mid-infrared wavelength range. Applying water-hole instead of the air-hole in fibers allows improving the dispersion characteristics, hence, contributing to supercontinuum generations. As a result, the broadband supercontinuum generation ranging from 1177 nm to 2629 nm was achieved in a 10 cm fiber by utilizing very low input pulse energy of 0.01 nJ and pulse duration of 100 fs at 1920 nm wavelength.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. Gauthron, J-S. Lauret, L. Doyennette, G. Lanty, A. Al Choueiry, S.J. Zhang, A. Brehier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte, Optics Express 18 (6) (2010) 1094-4087. DOI: https://doi.org/10.1364/OE.18.005912

Y. Cho, B. Park, J. Oh, M. Seo, K. Lee, C. Kim, T. Lee, D. H. Woo, S. Lee, H. M. Kim, H.J. Lee, K. Oh, D. I. Yeom, S. R. Dugasani, S. H. Park, and J. H. Kim, Optics Express 23 (10) (2015) 1094-4087. DOI: https://doi.org/10.1364/OE.23.013537

J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell, Science 282 (5393) (1998)1476–1478. DOI: https://doi.org/10.1126/science.282.5393.1476

R. F. Cregan, B. J. Mangan, C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Science 285 (5433) (1999) 1537–1539. DOI: https://doi.org/10.1126/science.285.5433.1537

T. T. Alkeskjold, Ph.D. thesis, Department of Communication, Optics & Materials, Technical University of Denmark (2005).

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78 (4) (2006) 1135–1184. DOI: https://doi.org/10.1103/RevModPhys.78.1135

W. Jin, J. Ju, H. L. Ho, Y. L. Hoo, A. Zhang, Frontiers of Optoelectronics 6 (1), 3-24 (2013) 2095-2759. DOI: https://doi.org/10.1007/s12200-012-0301-y

G. Stepniewski, R. Kasztelanic, D. Pysz, R. Stepien, M. Klimczak, R. Buczynski, Optical Materials Express 6(8) (2016) 2159-3930. DOI: https://doi.org/10.1364/OME.6.002689

L. Dong, B.K. Thomas, and L. Fu, Opt. Express 16 (21) (2008) 16423–16430. DOI: https://doi.org/10.1364/OE.16.016423

A. Yu. Chamorovskiy, and S.A. Nikitov, J. Commun. Technol. Electron. 58 (9) (2013) 879–890. DOI: https://doi.org/10.1134/S1064226913060053

Agrawal, G. P., Nonlinear Fiber Optics, 4th edition (2007) 978-0-12-369516-1.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, Meas. Sci. Technol. 12(7) (2001) 854 858. DOI: https://doi.org/10.1088/0957-0233/12/7/318

S. T. Cundiff, and J. Ye, Rev. Mod. Phys. 75(1), 2003, 325–342. DOI: https://doi.org/10.1103/RevModPhys.75.325

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, Opt. Lett. 32 (3) (2007) 307–309. DOI: https://doi.org/10.1364/OL.32.000307

Agrawal G P, Nonlinear Fiber Optics 5th edn, 2013(Oxford: Academic Press). DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5

A. Schliesser, N. Picqué, T. W. Hänsch., Nat. Photonics 6 (2012) 440–449. DOI: https://doi.org/10.1038/nphoton.2012.142

B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A.Y. Cho, Opt. Express 12 (1) (2014) 208–219. DOI: https://doi.org/10.1364/OPEX.12.000208

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, Laser Phys. Lett. 11 (2014) 055103. DOI: https://doi.org/10.1088/1612-2011/11/5/055103

R. Wilson and H. Tapp, TRAC-Trend. Anal. Chem. 18 (1999) 85–93. DOI: https://doi.org/10.1016/S0165-9936(98)00107-1

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C.M.B. Cordeiro, J.C. Knight, and F. G. Omenetto, Opt. Express 16 (2008) 7161–7168. DOI: https://doi.org/10.1364/OE.16.007161

X. L. Shi, M.S. Cao, J. Yuan, and X. Y. Fang, Appl. Phys. Lett. 95 (2009) 161103. DOI: https://doi.org/10.1063/1.3254214

C. Xia et, al, IEEE J. Sel. Top. Quant. 15 (2009) 422–434. DOI: https://doi.org/10.1109/JSTQE.2008.2010233

R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, Laser Phys. Lett. 7 (2010) 666–72. DOI: https://doi.org/10.1002/lapl.201010039

H. Le Van, V. C. Long, H. T. Nguyen, A. M. Nguyen, R. Buczynski, R. Kasztelanic, Laser Physics. 28 (2018) 1054-660X.

V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T.R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, Opt. Mater. Express. 9 (2019) 2159-3930. DOI: https://doi.org/10.1364/OME.9.002264

L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, Laser Phys 30 (2020) 1054-660X. DOI: https://doi.org/10.1088/1555-6611/ab6f09

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5 (2011) 141–148. DOI: https://doi.org/10.1038/nphoton.2011.309

Lumerical Solutions, Inc., http://www.lumerical.com. http://www.lumerical.com.">

Web page: Refractive Index Info: https://refractiveindex.info. https://refractiveindex.info.">

N.P. Barnes, M.S. Piltch, Opt. Soc. A 67 (5) (1977) 628. DOI: https://doi.org/10.1364/JOSA.67.000628

T. Kohoutek et. al., J. Opt. Soc. Am. B 28(9) (2011) 2284–2290. DOI: https://doi.org/10.1364/JOSAB.28.002284

M. E. Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C.F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, Opt. Express 18(5) (2010) 4547–4556. DOI: https://doi.org/10.1364/OE.18.004547

Downloads

Published

26-05-2020

How to Cite

[1]
B. Chu Van, M. Dang Ngoc, V. Cao Long, H. Nguyen Tuan and H. Le Van, Simulation Study of Mid-infrared Supercontinuum Generation at Normal Dispersion Regime in Chalcogenide Suspended-core Fiber Infiltrated with Water, Comm. Phys. 30 (2020) 151. DOI: https://doi.org/10.15625/0868-3166/30/2/14857.

Issue

Section

Papers
Received 27-02-2020
Accepted 19-03-2020
Published 26-05-2020