Facile Synthesis of CuO/ITO Film Via the Chronoamperometric Electrodeposition for Nonenzymatic Glucose Sensing

Duong Thi Thuy Tran, Dung Quoc Nguyen, Chuyen Hong Pham, Lam Dai Tran, Dai Tien Nguyen
Author affiliations

Authors

  • Duong Thi Thuy Tran Faculty of Basic Science - Thai Nguyen University of Agriculture and Forestry, Vietnam and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
  • Dung Quoc Nguyen Department of Chemistry, Thai Nguyen University of Education
  • Chuyen Hong Pham Department of Chemistry, Thai Nguyen University of Education
  • Lam Dai Tran Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam https://orcid.org/0000-0003-1364-8001
  • Dai Tien Nguyen Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/30/2/14801

Keywords:

copper (II) oxide, glucose sensing, chronoamperometry, cyclic voltammetry, human serum

Abstract

We report on the synthesis of copper (II) oxide (CuO)/indium tin oxide (ITO) electrode via the electrochemical deposition method using a CuSO4 solution and then thermal oxidation in air at temperature of 400 oC for 2 h. The crystalline structure and morphology of CuO were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The electrochemical properties of the CuO/ITO electrode to glucose in the alkaline medium of 0.1 M NaOH solution were investigated by cyclic voltammetry (CV) and Chronnoamperometry. The CuO-N/ITO electrode showed the best electrochemical properties for glucose detection in comparison to the others. Chronnoamperometry of CuO-N/ITO electrode to the glucose response showed excellent stability, the linear range of 1 mM to 3600 mM with high sensitivity of 283.6 mAcm-2mM-1 and 0.61 mM of the detection limit (S/N=3). A good response of the CuO-N/ITO electrode, which was investigated for different human serum samples, indicates a high potential of its towards a glucose sensor for analysis in real examples.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

N.Q. Dung, D. Patil, T.T. Duong, H. Jung, D. Kim, S.G. Yoon, An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite, Sensors Actuators, B Chem. 166–167 (2012) 103–109. doi:10.1016/j.snb.2012.01.008. DOI: https://doi.org/10.1016/j.snb.2012.01.008

N. Quoc Dung, D. Patil, H. Jung, D. Kim, A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites, Biosens. Bioelectron. 42 (2013) 280–286. doi:10.1016/j.bios.2012.10.044. DOI: https://doi.org/10.1016/j.bios.2012.10.044

N.Q. Dung, D. Patil, H. Jung, J. Kim, D. Kim, NiO-decorated single-walled carbon nanotubes for high-performance nonenzymatic glucose sensing, Sensors Actuators, B Chem. 183 (2013) 381–387. doi:10.1016/j.snb.2013.04.018. DOI: https://doi.org/10.1016/j.snb.2013.04.018

N.Q. Dung, T.T.T. Duong, T.D. Lam, D.D. Dung, N.N. Huy, D. Van Thanh, A simple route for electrochemical glucose sensing using background current subtraction of cyclic voltammetry technique, J. Electroanal. Chem. (2019) 113323. doi:https://doi.org/10.1016/j.jelechem.2019.113323. DOI: https://doi.org/10.1016/j.jelechem.2019.113323 https://doi.org/10.1016/j.jelechem.2019.113323.">

L.C. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45. doi:10.1111/j.1749-6632.1962.tb13623.x. DOI: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

M. Viticoli, A. Curulli, A. Cusma, S. Kaciulis, S. Nunziante, L. Pandolfi, F. Valentini, G. Padeletti, Third-generation biosensors based on TiO2 nanostructured films, Mater. Sci. Eng. C. 26 (2006) 947–951. DOI: https://doi.org/10.1016/j.msec.2005.09.080

K.M. El Khatib, R.M.A. Hameed, Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination, Biosens. Bioelectron. 26 (2011) 3542–3548. DOI: https://doi.org/10.1016/j.bios.2011.01.042

Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, L. Jin, ZnO nanorods/Au hybrid nanocomposites for glucose biosensor, Biosens. Bioelectron. 26 (2010) 275–278. DOI: https://doi.org/10.1016/j.bios.2010.06.006

B. Yuan, C. Wang, L. Li, S. Chen, Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography, Electrochem. Commun. 11 (2009) 1373–1376. DOI: https://doi.org/10.1016/j.elecom.2009.05.008

L.-C. Jiang, W.-D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron. 25 (2010) 1402–1407. DOI: https://doi.org/10.1016/j.bios.2009.10.038

X. Xiao, H. Li, Y. Pan, P. Si, Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids, Talanta. 125 (2014) 366–371. DOI: https://doi.org/10.1016/j.talanta.2014.03.030

S. Yang, G. Li, D. Wang, Z. Qiao, L. Qu, Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor, Sensors Actuators B Chem. 238 (2017) 588–595. DOI: https://doi.org/10.1016/j.snb.2016.07.105

D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du, B. Qiu, Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene, Biosens. Bioelectron. 54 (2014) 273–278. DOI: https://doi.org/10.1016/j.bios.2013.11.005

M. Saraf, K. Natarajan, S.M. Mobin, Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO), Dalt. Trans. 45 (2016) 5833–5840. DOI: https://doi.org/10.1039/C6DT00670A

C.-Y. Chiang, K. Aroh, N. Franson, V.R. Satsangi, S. Dass, S. Ehrman, Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting–Part II. Photoelectrochemical study, Int. J. Hydrogen Energy. 36 (2011) 15519–15526. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.041

C.-Y. Chiang, Y. Shin, K. Aroh, S. Ehrman, Copper oxide photocathodes prepared by a solution based process, Int. J. Hydrogen Energy. 37 (2012) 8232–8239. DOI: https://doi.org/10.1016/j.ijhydene.2012.02.049

S.M. Cha, G. Nagaraju, S.C. Sekhar, J.S. Yu, A facile drop-casting approach to nanostructured copper oxide-painted conductive woven textile as binder-free electrode for improved energy storage performance in redox-additive electrolyte, J. Mater. Chem. A. 5 (2017) 2224–2234. DOI: https://doi.org/10.1039/C6TA10428B

C.R. Crick, I.P. Parkin, CVD of copper and copper oxide thin films via the in situ reduction of copper (ii) nitrate-a route to conformal superhydrophobic coatings, J. Mater. Chem. 21 (2011) 14712–14716. DOI: https://doi.org/10.1039/c1jm11955a

Z.-Y. Tian, H.J. Herrenbrück, P.M. Kouotou, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus, Facile synthesis of catalytically active copper oxide from pulsed-spray evaporation CVD, Surf. Coatings Technol. 230 (2013) 33–38. DOI: https://doi.org/10.1016/j.surfcoat.2013.06.047

A. Kowalik-Klimczak, E. Stanisławek, J. Kacprzyńska-Gołacka, B. Kaźmierczak, P. Wieciński, The polyamide membranes modified by copper oxide using PVD techniques, J. Mach. Constr. Maintenance. Probl. Eksploat. (2018).

Downloads

Published

26-05-2020

How to Cite

[1]
D. T. T. Tran, D. Q. Nguyen, C. H. Pham, L. D. Tran and D. T. Nguyen, Facile Synthesis of CuO/ITO Film Via the Chronoamperometric Electrodeposition for Nonenzymatic Glucose Sensing, Comm. Phys. 30 (2020) 161. DOI: https://doi.org/10.15625/0868-3166/30/2/14801.

Issue

Section

Papers
Received 03-02-2020
Accepted 21-04-2020
Published 26-05-2020

Most read articles by the same author(s)