Mobility Edges in One-dimensional Disordered Aharonov-Bohm Rings

Phi Ba Nguyen


We study numerically the localization properties of the eigenstates of a tight-binding Hamiltonian model for noninteracting electrons moving in a one-dimensional disordered ring pierced by an Aharonov-Bohm flux. By analyzing the dependence of the inverse participation ratio on Aharonov-Bohm flux, energy, disorder strength and system size, we find that all states in the ring are delocalized in the weak disorder limit. The states lying deeply in the band tails will undergo a continuous delocalization-localization transition as the disorder strength in the ring sweeps from the weak to the strong disorder regime.


Anderson transition; delocalization-localization transition; Aharonov-Bohm flux; vector potential

Full Text:


DOI: Display counter: Abstract : 318 views. PDF : 89 views.


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 


Copyright by