Detection of Luminescence Centers in Colloidal Cd\(_{0.3}\)Zn\(_{0.7}\)S Nanocrystals by Synchronous Luminescence Spectroscopy

Phi Van Thang, Ho Van Tuyen, Vu Xuan Quang, Nguyen Thi Thuy Lieu, Nguyen Trong Thanh, Nguyen Xuan Nghia

Abstract


With the advantages of selectivity, spectral resolution and reduction of interference on account of light scattering, synchronous luminescence spectroscopy (SLS) is successfully applied to analyze complex mixtures with overlapped emission and/or excitation spectra. In fact, it is difficult to clearly distinguish the contributions of various luminescence centers to low-energy band of semiconductor nanocrystals (NCs). Herein, we report the application of SLS method to detect luminescence centers in colloidal Cd<sub>0.3</sub>Zn<sub>0.7</sub>S NCs. Their conventional luminescence and synchronous luminescence spectra were comparatively investigated. Differently from conventional luminescence spectrum, the emission peaks at 460 and 515 nm were found using SLS method. They are attributed to the emission transitions related to sulfur and zinc/cadmium vacancies. The obtained results are useful to clarify the nature of luminescence centers as well as relaxation mechanism in Cd<sub>x</sub>Zn<sub>1-x</sub>S NCs.


Keywords


colloidal Cd0.3Zn0.7S nanocrystals, synchronous luminescence spectroscopy, luminescence centers

Full Text:

PDF

References


. D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. vol. 84, 1998, pp. 2841-2845.

. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Springer, 2006.

. M.A. Osman, and A.G. Abd-Elrahim, Opt. Mater. vol. 77, 2018, pp. 1-12.

. T. Vo-Dinh, Anal. Chem. vol. 50, 1978, pp. 396-401.

. D. Patra, and T.H. Ghaddar, Talanta vol. 77, 2009, pp. 1549-1554.

. S. Taylor, and A. Samokhvalov, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy vol. 174, 2017, pp. 54-61.

. A. Alzahrani, and A. Samokhvalov, J. Porous Mater. vol. 24, 2017, pp. 1145-1154.

. A. Samokhvalov, J. Lumin. vol 192, 2017, pp. 388-396.

. A. Samokhvalov, J. Phys. Chem. C vol. 121, 2017, pp. 21985-21994.

. V. Kumar, S. Kumari, P. Kumar, M. Kar, and L. Kumar, Adv. Mater. Lett. vol. 6, 2015, pp. 139-147.

. J. Li, B. Kempken, V. Dzhagan, D.R.T. Zahn, J. Grzelak, S. Mackowski, J. Parisi, and J. Kolny-Olesiak, CrystEngComm vol. 17, 2015, pp. 5634-5643.

. S. Sain, and S.K. Pradhan, J. Alloy Compd. vol. 509, 2011, pp. 4176-4184.

. A. K. Chawla, S. Singhal, S. Nagar, H. Gupta, and R. Chandra, J. Appl. Phys. vol. 108, 2010, pp. 123519 (1-7).

. H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, and N. Taghavinia, J. Alloys Compd. vol. 586, 2014, pp. 380-384.

. J. Li, and L.W . Wang, Nano lett. vol. 3, 2003, pp. 1357-1363.

. J. Jasieniak, C. Bullen, J.V. Embden, and P. Mulvaney J. Phys. Chem. B vol. 109, 2005, pp. 20665-20668.

. A.K. Chawla, S. Singhal, S. Nagar, H. Gupta, and R. Chandra, J. Appl. Phys. vol. 108, 2010, pp. 123519 (1-7).

. J. Kim, J. Lee, H.S. Jang, D.Y. Jeon, and H. Yang, J. Nanosci. Nanotechnol. vol. 11, 2011, pp. 725-729.

. J. Yang, Y.Q. Gao, J. Wu, Z.M. Huang, X.J. Meng, M.R. Shen, J.L. Sun, and J.H. Chu, J. Appl. Phys. vol. 108, 2010, pp. 114102 (1-5).

. B. Choudhury, B. Borah, and A. Choudhury, Photochemistry and Photobiology vol. 88, 2012, pp. 257–264.

. P. Guyot-Sionnest, E. Lhuillier, and H. Liu, J. Chem. Phys. vol. 137, 2012, pp. 154704 (1-6).

. J. Manam, V. Chattejee, S. Das, A. Choubey, and S.K. Sharma, J. Lumin. vol. 130, 2010, pp. 292-297.

. P.K. Narayanam, P. Soni, R.S. Srinivasa, S.S. Talwar, and S.S. Major, J. Phys. Chem. C vol. 117, 2013, pp. 4314–4325.




DOI: https://doi.org/10.15625/0868-3166/30/2/13819 Display counter: Abstract : 74 views. PDF : 47 views.

Refbacks

  • There are currently no refbacks.




Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by