Detection of Luminescence Centers in Colloidal Cd\(_{0.3}\)Zn\(_{0.7}\)S Nanocrystals by Synchronous Luminescence Spectroscopy

Phi Van Thang, Ho Van Tuyen, Vu Xuan Quang, Nguyen Thi Thuy Lieu, Nguyen Trong Thanh, Nguyen Xuan Nghia
Author affiliations

Authors

  • Phi Van Thang Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam
  • Ho Van Tuyen Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang
  • Vu Xuan Quang Duy Tan University, 03 Quang Trung, Hai Chau, Da Nang
  • Nguyen Thi Thuy Lieu Posts and Telecommunications Institute of Technology, Km 10 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
  • Nguyen Trong Thanh Institute of Materials Science, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Xuan Nghia Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/30/2/13819

Keywords:

colloidal Cd0.3Zn0.7S nanocrystals, synchronous luminescence spectroscopy, luminescence centers

Abstract

With the advantages of selectivity, spectral resolution and reduction of interference on account of light scattering, synchronous luminescence spectroscopy (SLS) is successfully applied to analyze complex mixtures with overlapped emission and/or excitation spectra. In fact, it is difficult to clearly distinguish the contributions of various luminescence centers to low-energy band of semiconductor nanocrystals (NCs). Herein, we report the application of SLS method to detect luminescence centers in colloidal Cd<sub>0.3</sub>Zn<sub>0.7</sub>S NCs. Their conventional luminescence and synchronous luminescence spectra were comparatively investigated. Differently from conventional luminescence spectrum, the emission peaks at 460 and 515 nm were found using SLS method. They are attributed to the emission transitions related to sulfur and zinc/cadmium vacancies. The obtained results are useful to clarify the nature of luminescence centers as well as relaxation mechanism in Cd<sub>x</sub>Zn<sub>1-x</sub>S NCs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

. D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. vol. 84, 1998, pp. 2841-2845. DOI: https://doi.org/10.1063/1.368425

. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Springer, 2006. DOI: https://doi.org/10.1007/978-0-387-46312-4

. M.A. Osman, and A.G. Abd-Elrahim, Opt. Mater. vol. 77, 2018, pp. 1-12. DOI: https://doi.org/10.1016/j.optmat.2018.01.011

. T. Vo-Dinh, Anal. Chem. vol. 50, 1978, pp. 396-401. DOI: https://doi.org/10.1021/ac50025a010

. D. Patra, and T.H. Ghaddar, Talanta vol. 77, 2009, pp. 1549-1554. DOI: https://doi.org/10.1016/j.talanta.2008.09.007

. S. Taylor, and A. Samokhvalov, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy vol. 174, 2017, pp. 54-61. DOI: https://doi.org/10.1016/j.saa.2016.11.011

. A. Alzahrani, and A. Samokhvalov, J. Porous Mater. vol. 24, 2017, pp. 1145-1154. DOI: https://doi.org/10.1007/s10934-016-0354-1

. A. Samokhvalov, J. Lumin. vol 192, 2017, pp. 388-396. DOI: https://doi.org/10.1016/j.jlumin.2017.07.009

. A. Samokhvalov, J. Phys. Chem. C vol. 121, 2017, pp. 21985-21994. DOI: https://doi.org/10.1021/acs.jpcc.7b02540

. V. Kumar, S. Kumari, P. Kumar, M. Kar, and L. Kumar, Adv. Mater. Lett. vol. 6, 2015, pp. 139-147. DOI: https://doi.org/10.5185/amlett.2015.5632

. J. Li, B. Kempken, V. Dzhagan, D.R.T. Zahn, J. Grzelak, S. Mackowski, J. Parisi, and J. Kolny-Olesiak, CrystEngComm vol. 17, 2015, pp. 5634-5643. DOI: https://doi.org/10.1039/C5CE00380F

. S. Sain, and S.K. Pradhan, J. Alloy Compd. vol. 509, 2011, pp. 4176-4184. DOI: https://doi.org/10.1016/j.jallcom.2011.01.035

. A. K. Chawla, S. Singhal, S. Nagar, H. Gupta, and R. Chandra, J. Appl. Phys. vol. 108, 2010, pp. 123519 (1-7).

. H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, and N. Taghavinia, J. Alloys Compd. vol. 586, 2014, pp. 380-384. DOI: https://doi.org/10.1016/j.jallcom.2013.09.190

. J. Li, and L.W . Wang, Nano lett. vol. 3, 2003, pp. 1357-1363. DOI: https://doi.org/10.1021/nl034488o

. J. Jasieniak, C. Bullen, J.V. Embden, and P. Mulvaney J. Phys. Chem. B vol. 109, 2005, pp. 20665-20668. DOI: https://doi.org/10.1021/jp054289o

. A.K. Chawla, S. Singhal, S. Nagar, H. Gupta, and R. Chandra, J. Appl. Phys. vol. 108, 2010, pp. 123519 (1-7). DOI: https://doi.org/10.1063/1.3524516

. J. Kim, J. Lee, H.S. Jang, D.Y. Jeon, and H. Yang, J. Nanosci. Nanotechnol. vol. 11, 2011, pp. 725-729. DOI: https://doi.org/10.1166/jnn.2011.3193

. J. Yang, Y.Q. Gao, J. Wu, Z.M. Huang, X.J. Meng, M.R. Shen, J.L. Sun, and J.H. Chu, J. Appl. Phys. vol. 108, 2010, pp. 114102 (1-5). DOI: https://doi.org/10.1063/1.3516157

. B. Choudhury, B. Borah, and A. Choudhury, Photochemistry and Photobiology vol. 88, 2012, pp. 257–264. DOI: https://doi.org/10.1111/j.1751-1097.2011.01064.x

. P. Guyot-Sionnest, E. Lhuillier, and H. Liu, J. Chem. Phys. vol. 137, 2012, pp. 154704 (1-6). DOI: https://doi.org/10.1063/1.4758318

. J. Manam, V. Chattejee, S. Das, A. Choubey, and S.K. Sharma, J. Lumin. vol. 130, 2010, pp. 292-297. DOI: https://doi.org/10.1016/j.jlumin.2009.09.005

. P.K. Narayanam, P. Soni, R.S. Srinivasa, S.S. Talwar, and S.S. Major, J. Phys. Chem. C vol. 117, 2013, pp. 4314–4325. DOI: https://doi.org/10.1021/jp312546a

Downloads

Published

26-05-2020

How to Cite

[1]
P. V. Thang, H. V. Tuyen, V. X. Quang, N. T. T. Lieu, N. T. Thanh and N. X. Nghia, Detection of Luminescence Centers in Colloidal Cd\(_{0.3}\)Zn\(_{0.7}\)S Nanocrystals by Synchronous Luminescence Spectroscopy, Comm. Phys. 30 (2020) 181. DOI: https://doi.org/10.15625/0868-3166/30/2/13819.

Issue

Section

Papers
Received 16-05-2019
Accepted 14-05-2020
Published 26-05-2020