Controllable Optical Properties of Multiple Electromagnetically Induced Transparency in Gaseous Atomic Media

Bang Nguyen Huy, Doai Le Van, Khoa Dinh Xuan
Author affiliations

Authors

  • Bang Nguyen Huy Vinh University
  • Doai Le Van Vinh University
  • Khoa Dinh Xuan Vinh University

DOI:

https://doi.org/10.15625/0868-3166/29/1/13185

Keywords:

Electromagnetically Induced Transparency

Abstract

The advent of electromagnetically induced transparency (EIT) offered a new coherent material with exotic and controllable optical properties. Although, studies on single-EIT are described in detail for single-EIT, however, extension from single- to multi- EIT is currently of current interest due to it gains advantages in multi-channel optical communication, waveguides for optical signal processing and multi-channel quantum information processing. In this work, we review recent research works concerning multi-EIT and some related applications, as controlling group velocity of light, giant Kerr nonlinearity, optical bistability. A special attention of the review also gives for analytical interpretations of EIT spectrum, its dispersion and related applications such as EIT enhanced Kerr nonlinearity and optical bistability to give physics insight. From experimental point of view, a latest development for measuring multi-EIT spectrum and its dispersion in hot medium is presented and compared to theoretical analytical representations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Imamoglu, S.E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states”, Opt. Lett. 14 (1989) 1344-1346.

K.J. Boller, A. Imamoglu, S.E. Harris, “Observation of electromagnetically induced transparency”, Phys. Rev. Lett. 66 (1991) 2593.

Yong-qing Li and Min Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms”, Phys. Rev. A 51 (4) (1995) 2703-2706.

Yong-qing Li and Min Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment”, Phys. Rev. A 51 (1) (1995) 576-584.

S.A. Hopkins, E. Usadi, H.X. Chen, A.V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems”, Opt. Comm. 138 (1997) 185-192.

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam”, Found. Phys. 28 (1998) 621-638.

Jason J. Clarke and William A. van Wijngaarden, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms”, Phys. Rev. A, 64 (2001) 023818.

A. S. Zibrov, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor”, Phys. Rev. A 65 (2002) 043817.

J. Zhao, L. Wang, L. Xiao, Y. Zhao, W. Yin, S. Jia, “Experimental measurement of absorption and dispersion in V-type cesium atom”, Opt. Comm. 206 (2002) 341-345.

V. Ahufinger, R. Corbalan, F. Cataliotti, S. Burger, F. Minardi, C. Fort, “Electromagnetically induced transparency in a Bose-Einstein condensate”, Opt. Comm. 211 (2002) 159-165.

H.S. Mon, L. Lee, and J.B. Kim, “Coupling intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms”, J. Opt. Soc. Am. B. Vol.22, N.12 (2005) 2529-2533.

Li Li, P.Qi, A. Lazoudis, E. Ahmed, A.M. Lyyra, “Observation of electromagnetically induced transparency in two-photon transitions of 39K2”, Chem. Phys. Lett. 403 (2005) 262-267.

Y. Wu, and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis”, Phys. Rev. A 71 (2005) 053806.

S. Sen, T. K. Dey, M. R. Nath and G. Gangopadhyay, “Comparison of Electromagnetically Induced Transparency in lambda, cascade and vee three-level systems”, J. Mod. Opt. 62 (2015) 166-174.

Hoonsoo Kang, Jong Su Kim, Sung In Hwang, Young Ho Park, Do-kyeong -Ko, Jongmin Lee, “Electromagnetically induced transparency on GaAs quantum well to observe hole spin dephasing”, Opt. Exp. 16 (20) (2008) 15728-15732.

S. Usefadeh and M. J. Karrimi, “Electromagnetically induced transparency in the strained quantum wells: Effects of structural parameters and geometrical size”, Optik 127 (21) (2016) 10208-10215.

Yi-Wen Jiang, Ka-Di Zhu, Zhuo-Jie Wu, Xiao-Zhong Yuan and Ming Yao, “Electromagnetically induced transparency in quantum dot systems”, J. Phys. B: At. Mol. Opt. Phys. 39 (12) (2006) 2612.

V. Pavlovic, M. Susnjar, K. Petrovic, L. Stevanovic, “Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity”, Opt. Mat. 78 (2018) 191-200

Rana Asgari Sabet, Mostafa Sahrai, and Hamed Sattari, “Utilizing electromagnetically induced transparency in InAs quantum dots for all-optical transistor design”, App. Opt. 56 (8) (2017) 7944-7951

A.S. Zibrov, M.D. Lukin, D.E. Nikonov, L. Hollberg, M.O. Scully, V.L. Velichansky, and H.G. Robinson, “Experimental Observation of Laser Oscillation without Population Inversion via Quantum Interference in Rb”, Phys. Rev. Lett. 75 (1995) 1499.

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency, Eur. Phys. Lett. 72 (2) (2005) 221.

S. E. Harris, Lene Vestergaard Hau, “Nonlinear Optics at Low Light Levels”, Phys. Rev. Lett., 82, (1999) 4611.

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency”, Opt. Lett., 21 (1996) 1936.

Hoonsoo Kang and Yifu Zhu, Observation of Large Kerr Nonlinearity at Low Light Intensities, Phys. Rev. Lett., 91 (2003) 093601.

H. Wang, D. Goorskey, and M. Xiao, Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System, Phys. Rev. Lett., 87 (2001) 073601.

L. V. Doai, D. X. Khoa, N. H. Bang, “EIT enhanced self-Kerr nonlinearity in the three-level lambda system under Doppler broadening,” Phys. Scr. 90 045502 (2015).

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system”, Phys. Rev. A 67, 041801(R) (2003).

S.E. Harris, J.E. Field, and A. Kasapi, Dispersive properties of electromagnetically induced transparency, Phys. Rev. A. 46 (1) (1992) 29-32.

Amitabh Joshi, Min Xiao, Electromagnetically induced transparency and its dispersion properties in a four-level inverted-Y atomic system, Phys. Lett. A 317 (2003) 370-377.

M. Xiao, Y,-Q. Li, S.-Z. Jin, J. Gea-Banacloche, Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms, Phys. Rev. Lett. 74 (1995) 666.

L.V. Hau, S. E. Harris, Z, Dutton, C.H. Bejroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397 (1999) 594.

D.F. Phillips, A. Fleischhauer, A. Mair, and R.L. Walsworth, Storage of Light Atom Vapor, Phys. Rev. Lett. 86 (5) (2001) 783-786.

S. E. Harris and Z. F. Luo, Preparation energy for electromagnetically induced transparency, Phys. Rev. A 52 (1995) R928.

D. X. Khoa, H. M. Dong, L. V. Doai and N. H. Bang, Propagation of laser pulse in a three-level cascade inhomogeneously broadened medium under electromagnetically induced transparency conditions, Optik 131 (2017) 497.

H. M. Dong, L. V. Doai, and N. H. Bang, “Pulse propagation in an atomic medium under spontaneously generated coherence, incoherent pumping, and relative laser phase”, Opt. Comm. 426 (2018) 553-557

B.S.Ham, “Nonlinear Optics of Atoms and Electromagnetically Induced Transparency: Dark resonance based optical switching”, J. Mod. Opt., 49 (2002) 2477.

. M.A. Anton, F. Carreno, Oscar G. Calderon, S. Melle, I. Gonzalo, “Optical switching by controlling the double-dark resonances in a N-tripod five-level atom”, Opt. Comm, 281 (2008) 6040-6048.

Sabir Ali, Ayan Ray, and Alok Chakrabarti, “Double dark resonance in inverted Y system and its application in attenuating the optical switching action”, Eur. Phys. J. D. (2016) 70: 27

T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories”, Nature (London) 438 (2005) 833-836.

F. Vewinger, J. Appel, E. Figuera, and A. Lvovsky, “Adiabatic frequency conversion of optical information in atomic vapor”, Opt. Lett. 32 (2007) 2771.

D. McGloin, D.J. Fullton, M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes”, Opt. Commu., 190 (2001) 221.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system”, Phys. Rev. A 66 (2002) 015802.

Y. Chen, X. G. Wei and B. S. Ham,” Optical properties of an N-type system in Doppler-broadened multilevel atomic media of the rubidium D2 line”, J. Phys. B: At. Mol. Opt. Phys., 42 (2009) 065506

B.P. Hou, S.J. Wang, W.L. Yu, W.L. Sun, “Double electromagnetically induced two-photon transparency in a five-level atomic system”, Phys. Lett. A 352 (2008) 462-466.

J. Qi, “Electromagnetically induced transparency in an inverted Y-type four-level system”, Phys. Scr. 81 (2010) 015402

Y. Hong, Y. Dong, Z. Mei, F. Bo, Z. Yan, and W.J, Hui, “Absorption and dispersion control in a five-level M-type atomic system”, Chin. Phys. B, 21, N. 11 (2012) 114207.

H. Yu, K. S. Kim, J. D. Kim, H. K. Lee, and J. B. Kim, “Observation of Doppler-free electromagnetically induced transparency in atoms selected optically with specific velocity”, Phys. Rev. A, 84 (2011) 052511.

Hoon Yu, Kwan Su Kim, Jung Dong Kim, Hyun Kyung Lee, and Jung Bog Kim, “Observation of Doppler-free electromagnetically induced transparency in atoms selected optically with specific velocity”, Phys. Rev. A 84 (2011) 052511.

Wenchao Xu and Brian DeMarco, “Velocity-selective electromagnetically-induced-transparency measurements of potassium Rydberg states”, Phys. Rev. A 93 (2016) 011801.

A. Krasteva, B. Ray, D. Slavov, P. Todorov, P.N. Ghosh, S. Mitra, and S. Cartaleva, “Observation and theoretical simulation of electromagnetically induced transparency and enhanced velocity selective optical pumping in cesium vapour in a micrometric thickness optical cell”, J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 175004 (12pp).

R. Kumar, V. Gokhroo, and S.N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface”, New J. Phys. 17 (2015) 123012.

Fam Le Kien, “Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber”, Phys. Rev. A 91 (2015) 053847.

S. Li, X. Yang, X. Cao, C. Xie and H. Wang, “Two electromagnetically induced transparency windows and an enhanced electromagnetically induced transparency signal in a four-level tripod atomic system”, J. Phys. B: At. Mol. Opt. Phys. 40 (2007) 3211–3219.

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an Electromagnetically Induced Transparency Window of a Cascade System with 133Cs Rydberg Atoms in a Static Magnetic Field”, J. Phys. Soc. Jap. 84 (2015) 104301.

A. Jagannathan, N. Arunkumar, J. A. Joseph, and J. E. Thomas, “Optical Control of Magnetic Feshbach Resonances by Closed-Channel Electromagnetically Induced Transparency”, Phys. Rev. Lett. 116 (2016) 075301

D. Han, Y. Zeng, Y. Bai, H. Cao, W. Chen, C. Huang, H. Lu, “Controlling the group velocity in a five-level K-type atomic system”, Opt. Comm. 281 (2008) 4712-4714.

K. Yadav, A. Wasan, “Sub-luminal and super-luminal light propagation in inverted-Y system with wavelength mismatching effects”, Phys. Lett. A 381 (2017) 3246-3253.

V. Bharti, V. Natarajan, “Sub- and super-luminal light propagation using a Rydberg state”, Opt. Comm. 392 (2017) 180-184.

H. Sun, Y. Niu, S. Jin and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media”, J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 065504 (6pp).

J. Sheng, X. Yang, H. Wu, and M. Xiao, “Modified self-Kerr-nonlinearity in a four-level N-type atomic system”, Phys. Rev. A 84, 053820 (2011).

H. R. Hamedi and G. Juzeliunas, “Phase-sensitive Kerr nonlinearity for closed-loop quantum systems”, Phys. Rev. A 91, 053823 (2015).

M. Sahrai, H.R. Hamedi and M. Memarzadeh, “Kerr nonlinearity and optical multi-stability in a four-level Y-type atomic system”, J. Mod. Opt., Vol. 59, No. 11, (2012) 980–987.

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme”, Opt Quant Electron, 45, No. 3 (2013) 295-306.

L. Ebrahimi Zohravi, R. Doostkam, S. M. Mousavi, and M. Mahmoudi, “Controlling the optical bistability in a Kobrak-Rice 5-level quantum system”, Progr. in Electroma. Res. M, Vol. 25 (2012) 1-11.

H. Jafarzadeh, “Controlling the optical bistability in a multi-level atomic system via similar parameters of quantum well nanostructure” J. App. Phys. 117 (2015) 163103.

Antón M A, Carreño F, Calderón O G, Melle S, Gonzalo I, “Optical switching by controlling the double-dark resonances in a N-tripod five-level atom, Opt. Commun. 281 (2008)6040.

Yu R, Li J, Huang P, Zheng A, Yang X (2009), “Dynamic control of light propagation and optical switching through an RF-driven cascade-type atomic medium”, Phys. Lett. A 373 2992.

Fountoulakis A, Terzis A F, Paspalakis E, “All-optical modulation based on electromagnetically induced transparency”, Phys. Lett. A 374 (2010) 3354.

Yu R, Li J, Ding C, Yang X, “Dual-channel all-optical switching with tunable frequency in a five-level double-ladder atomic system”, Opt. Commun. 284 (2011)2930.

Y. Li, C. Hang, L. Ma, G. Huang, “Controllable entanglement of lights in a five-level system”, Phys. Rev. A 354 (2006) 1-7.

J. Wang, L.B. Kong, X.H. Tu, K.J. Jiang, K. Li, H.W. Xiong, Y. Zhu, M.S. Zhan, “Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms”, Phys. Lett., A 328, (2004) 437-443.

K. Kowalski, , V. Cao Long, H. Nguyen Viet, S. Gateva, M. Głódz, J. Szonert, “Simultaneous coupling of three hfs components in a cascade scheme of EIT in cold 85Rb atoms”, J. Non-Crystall. Solids, 355 (2009) 1295-1301.

M.D. Lukin, A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons”, Phys. Rev. Lett. 84 (2000) 1419.

L.V. Doai, P.V. Trong, D.X. Khoa, and N.H. Bang, “Electromagnetically induced transparency in five-level cascade scheme of 85Rb atoms: An analytical approach”, Optik, 125 (2014) 3666–3669.

D. X. Khoa, P. V. Trong, L. V. Doai and N. H. Bang, “Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach”, Phys, Scr. 91 (2016) 035401.

D.X. Khoa, L.C. Trung, P.V. Thuan, L.V. Doai and N.H. Bang, “Measurement of dispersive profile of a multi-window EIT spectrum in a Doppler-broadened atomic medium”, J. Opt. Soc. Am. B 34 (6) (2017) 1255-1263.

D. X. Khoa, L. V. Doai, D. H. Son, and N. H. Bang, “Enhancement of self-Kerr nonlinearity via electromagnetically induced transparency in a five-level cascade system: an analytical approach,” J. Opt. Soc. Am. B., 31, N6 (2014) 1330.

D. X. Khoa, L. V. Doai, L. N. M. Anh, L. C. Trung, P. V. Thuan, N. T. Dung, and N. H. Bang: “Optical bistability in a five-level cascade EIT medium: An analytical approach”, J. Opt. Soc. Am. B, Vol. 33, N. 4 (2016) 735-740.

R. Kumar, V. Gokhroo, and S.N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface”, New J. Phys. 17 (2015) 123012.

Anh Nguyen Tuan, Doai Le Van, Son Doan Hoai, and Bang Nguyen Huy, “Manipulating multi-frequency light in a five-level cascade EIT medium under Doppler broadening”, Optik 171 (2018) 721-727.

N. T. Anh, L. V. Doai, and N. H. Bang, “Manipulating multi-frequency light in a five-level cascade-type atomic medium associated with giant self-Kerr nonlinearity”, J. Opt. Soc. Am. B 35 (2018) 1233.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption”, Phys. Rev. A 59 (1999) 4732-4735.

M Fleischhauer, A Imamoglu, and J P Marangos, “Electromagnetically induced transparency: Optics in coherent media”, Rev. Mod. Phys., 77 (2005) 633.

J. P. Marangos, “Topical review: Electromagnetically induced transparency”, J. Mod. Opt. 45 (1998) 471-503

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium”, Phys. Rev. Lett. 76 (1996) 2698.

Y. Li, and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms”, Opt. Lett. 21 (1996) 1064.

M.D. Lukin, S.F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states”, Phys. Rev. Lett. 84 (2000) 4232.

Hsiang-Yu Lo, Yen-Chun Chen, Po-Ching Su, Hao-Chung Chen, Jun-Xian Chen, Ying-Cheng Chen, Ite A. Yu, and Yong-Fan Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels”, Phys. Rev. A 83 (2011) 041804(R).

X. Yang, S. Li, C. Zhang, and H. Wang, “Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system”, J. Opt. Soc. Am B, Vol. 26, Issue 7, 1423 (2009).

M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency”, Phys. Rev. Lett. 84 (2000) 5094

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles”, Rev. Mod. Phys. 75 (2003) 457-472

R. W. Boyd, D. J. Gauthier, A. L. Gaeta and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium”, Phys. Rev. A 71 (2005) 023801.

R. W. Boyd, “Slow and fast light: fundamentals and applications”, J. Mod. Opt. 56 (2009) 1908–1915

M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas”, Phys. Rev. Lett. 82, 229 (1999).

D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation”, Phys. Rev. Lett. 83, 1767 (1999).

A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, P.R. Hammer, “Observation of ultraslow and stored light pulses in a solid”, Phys. Rev. Lett. 88, 023602 (2002).

K. Bencheikh, E. Baldit, S. Briaudeau, P. Monnier, J. A. Levenson, and G. Mélin, “Slow light propagation in a ring erbium-doped fiber,” Opt. Express 18(25), 25642–25648 (2010).

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406 (6793), 277–279 (2000).

E.E. Mikhailov, V.A. Sautenkov, I. Novikova, G.R. Welch, “Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas”, Phys. Rev. A 69, 063808 (2004).

E.E. Mikhailov, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, “Absorption resonance and large negative delay in rubidium vapor with a buffer gas”, J. Opt. Soc. Am. B 21, 425 (2004).

A. M Akulshin and R. J McLean, “Fast light in atomic media”, J. Opt. 12 (2010) 104001 (11pp)

G. S. Agarwal, T. N. Dey, S. Menon, “Knob for changing light propagation from subluminal to superluminal”, Phys. Rev. A 64 (2001) 053809

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A 68 (1), 013810 (2003).

H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, X. Chen, “Light propagation from subluminal to superluminal in a three-level Λ-type system”, Phys. Lett. A 335 (2005) 68–75

M. Mahmoudi, M. Sahrai, H. Tajalli, “Subluminal and superluminal light propagation via interference of incoherent pump fields”, Phys. Lett. A 357 (2006) 66–71

F. Carreño, Oscar G. Calderón, M. A. Antón, and Isabel Gonzalo, “Superluminal and slow light in -type three-level atoms via squeezed vacuum and spontaneously generated coherence”, Phys. Rev. A 71, 063805 (2005).

I. H. Bae and H. S. Moon, “Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell,” Phys. Rev. A 83 (5), 053806 (2011).

K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36 (12), 2185–2187 (2011).

S. Dutta, “The incoherent pump rate: an optical tool for controlling the probe response and dispersion in a three-level Λ system in the presence of spontaneously generated coherence”, Phys. Scr. 83 (2011) 015401 (7pp).

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system”, Phys. Rev. A 92 (2015) 023846

T.N. Dey and G.S. Agarwal, “Observable effects of Kerr nonlinearity on slow light”, Phys. Rev. A 76, 015802 (2007).

H. Ali, Ziauddin and I. Ahmad, “The effect of Kerr nonlinearity and Doppler broadening on slow light propagation”, Laser Phys. 24 (2014) 025201.

H. Wu and M. Xiao, “Cavity linewidth narrowing and broadening due to competing linear and nonlinear dispersions”, Opt. Lett. 32 (2007) 3122-3124.

L.A. Lugiato, “Theory of Optical Bistability”, in E. Wolf (ed.), Progr. in Opt., Vol. 21, North Holland, Amsterdam 1984, pp. 71–216.

H. M. Gibbs, “Optical Bistability: Controlling Light with Light”, Academic Press, New York, 1985.

Hai Wang, David Goorskey, and Min Xiao, “Controlling light by light with three-level atoms inside an optical cavity”, Opt. Lett., Vol. 27, No. 15 (2002) 1354-356.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system”, Phys. Rev. A 67, 041801(R) (2003).

M A Anton and Oscar G Calderon, “Optical bistability using quantum interference in V -type atoms”, J. Opt. B: Quantum Semiclass. Opt., 4 (2002) 91–98.

A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91 (2003) 143904.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system”, Phys. Rev. A 67, 041801(R) (2003).

J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system”, Physic. D 228 (2007) 148.

Zhen Wang, Ai-Xi Chen, Yanfeng Bai, Wen-Xing Yang, and Ray-Kuang Lee, “Coherent control of optical bistability in an open Λ-type three-level atomic system”, J. Opt. Soc. Am. B, Vol. 29, No. 10 (2012) 2891-2896.

J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium”, Phys. Rev. A 74, 035801 (2006).

X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B,39 (2006) 5161.

M. Sahrai, S.H.Asadpour, H.Mahrami, R.Sadighi-Bonabi, “Controlling the optical bistability via quantum interference in a four-level N-type atomic system”, J. Lumines., 131 (2011) 1682–1686.

M. Sahrai, H.R. Hamedi and M. Memarzadeh, “Kerr nonlinearity and optical multi-stability in a four-level Y-type atomic system”, J. Mod. Opt., Vol. 59, No. 11, (2012) 980–987.

H. R. Hamedi, S. H. Asadpour, M. Sahrai, B. Arzhang, D. Taherkhani, “Optical bistability and multi-stability in a four-level atomic scheme”, Opt. Quant. Electron., Vol 45, No. 3 (2013) 295–306.

L. Ebrahimi Zohravi, R. Doostkam, S. M. Mousavi, and M. Mahmoudi, “Controlling the optical bistability in a Kobrak-Rice 5-level quantum system”, Progr. Electrom. Re. M, Vol. 25 (2012) 1-11.

Downloads

Published

05-02-2019

How to Cite

[1]
B. Nguyen Huy, D. Le Van and K. Dinh Xuan, Controllable Optical Properties of Multiple Electromagnetically Induced Transparency in Gaseous Atomic Media, Comm. Phys. 29 (2019) 1. DOI: https://doi.org/10.15625/0868-3166/29/1/13185.

Issue

Section

Reviews
Received 09-10-2018
Accepted 29-11-2018
Published 05-02-2019

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.