Computational Investigations of the Transmembrane Italian-Mutant (E22K) 3A\(\beta_{11 - 40}\) in Aqueous Solution

Son Tung Ngo


The Amyloid beta (Aβ) oligomers are characterized as critical cytotoxic materials in Alzheimer’s disease (AD) pathogenesis. Structural details of transmembrane oligomers are inevitably necessary to design/search potential inhibitor due to treat AD. However, the experimental detections for structural modify of low-order Aβ oligomers are precluded due to the extremely dynamic fluctuation of the oligomers. In this project, the transmembrane Italian-mutant (E22K) 3Aβ11-40 (tmE22K 3Aβ11-40) was extensively investigated upon the temperature replica exchange molecular dynamics (REMD) simulations. The structural changes of the trimer when replacing the negative charged residue E22 by a positively charged residue K were monitored over simulation intervals. The oligomer size was turned to be larger and the increase of β-content was recorded. The momentous gain of intermolecular contacts with DPPC molecules implies that tmE22K 3Aβ11-40 easier self-inserts into the membrane than the WT one. Furthermore, the tighter interaction between constituting monomers was indicated implying that the E22K mutation probably enhances the Aβ fibril formation. The results are in good agreement with experiments that E22K amyloid is self-aggregate faster than the WT form. Details information of tmE22K trimer structure and kinetics probably yield the understanding of AD mechanism.


Amyloid oligomer, E22K, Italian mutation, REMD, transmembrane

Full Text:



H.W. Querfurth, F.M. LaFerla, Alzheimer's disease, N. Engl. J. Med., 362 (2010) 329-344.

Alzheimer's_association, Alzheimer's disease facts and figures Alzheimer's disease facts and figures (2016).

M.D. Carter, G.A. Simms, D.F. Weaver, The development of new therapeutics for Alzheimer's disease, Clinical Pharmalogy and Therapeutics, 88 (2010) 475-486.

J. Nasica-Labouze, P.H. Nguyen, F. Sterpone, O. Berthoumieu, N.-V. Buchete, S. Coté, A. De Simone, A.J. Doig, P. Faller, A. Garcia, A. Laio, M.S. Li, S. Melchionna, N. Mousseau, Y. Mu, A. Paravastu, S. Pasquali, D.J. Rosenman, B. Strodel, B. Tarus, J.H. Viles, T. Zhang, C. Wang, P. Derreumaux, Amyloid β Protein and Alzheimer’s Disease: When Computer Simulations Complement Experimental Studies, Chem. Rev., 115 (2015) 3518-3563.

L.M. Jarvis, Clinical Trial Failures, Chem. Eng. News, 90 (2012) 8.

D.J. Selkoe, J. Hardy, The Amyloid hypothesis of Alzheimer's disease at 25 years, EMBO Mol. Med., 8 (2016) 595-608.

W.I. Rosenblum, Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult, Neurobiol Aging, 35 (2004) 969-974.

A. Abbott, E. Dolgin, Failed Alzheimer's trial does not kill leading theory of disease., Nature, 540 (2016) 15-16.

A.J. Doig, M.P. del Castillo-Frias, O. Berthoumieu, B. Tarus, J. Nasica-Labouze, F. Sterpone, P.H. Nguyen, N.M. Hooper, P. Faller, P. Derreumaux, Why Is Research on Amyloid-β Failing to Give New Drugs for Alzheimer’s Disease?, ACS Chem Neurosci, 8 (2017) 1435-1437.

D.M. Walsh, D.J. Selkoe, Aβ Oligomers – a Decade of Discovery, J. Neurochem., 101 (2007) 1172-1184.

J. Bieschke, M. Herbst, T. Wiglenda, R.P. Friedrich, A. Boeddrich, F. Schiele, D. Kleckers, J.M. Lopez del Amo, B.A. Grüning, Q. Wang, M.R. Schmidt, R. Lurz, R. Anwyl, S. Schnoegl, M. Fändrich, R.F. Frank, B. Reif, S. Günther, D.M. Walsh, E.E. Wanker, Small-Molecule Conversion of Toxic Oligomers to Nontoxic β-Sheet–Rich Amyloid Fibrils, Nat Chem Biol, 8 (2012) 93-101.

M.K. Jana, R. Cappai, C.L.L. Pham, G.D. Ciccotosto, Membrane-bound Tetramer and Trimer Aβ Oligomeric Species Correlate with Toxicity Towards Cultured Neurons, J. Neurochem., 136 (2016) 594-608.

S. Banerjee, Z. Sun, E.Y. Hayden, D.B. Teplow, Y.L. Lyubchenko, Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy, ACS Nano, 11 (2017) 12202-12209.

S.T. Ngo, S.-T. Fang, S.-H. Huang, C.-L. Chou, P.D.Q. Huy, M.S. Li, Y.-C. Chen, Anti-arrhythmic medication propafenone a potential drug for Alzheimer’s disease inhibiting aggregation of Aβ: in silico and in vitro studies, J. Chem. Inf. Model., 56 (2016) 1344-1356.

L. Tran, S.T. Ngo, M.T. Nguyen, Propafenone effects on the stable structures of Aβ16-22 system, Chem. Phys. Lett., 696 (2018) 55-60.

L. Hendriks, C.M. van Duijn, P. Cras, M. Cruts, W. Van Hul, F. van Harskamp, A. Warren, M.G. McInnis, S.E. Antonarakis, J.-J. Martin, A. Hofman, C. Van Broeckhoven, Presenile Dementia and Cerebral Haemorrhage Linked to a Mutation at Codon 692 of the β-Amyloid Precursor Protein Gene, Nat Genet, 1 (1992) 218-221.

E. Levy, M. Carman, I. Fernandez-Madrid, M. Power, I. Lieberburg, S. van Duinen, G. Bots, W. Luyendijk, B. Frangione, Mutation of the Alzheimer's disease Amyloid Gene in Hereditary Cerebral Hemorrhage, Dutch Type, Science, 248 (1990) 1124-1126.

C. Nilsberth, A. Westlind-Danielsson, C.B. Eckman, M.M. Condron, K. Axelman, C. Forsell, C. Stenh, J. Luthman, D.B. Teplow, S.G. Younkin, J. Naslund, L. Lannfelt, The 'Arctic' APP Mutation (E693G) causes Alzheimer's Disease by Enhanced Aβ Protofibril Formation, Nat Neurosci, 4 (2001) 887-893.

T. Tomiyama, T. Nagata, H. Shimada, R. Teraoka, A. Fukushima, H. Kanemitsu, H. Takuma, R. Kuwano, M. Imagawa, S. Ataka, Y. Wada, E. Yoshioka, T. Nishizaki, Y. Watanabe, H. Mori, A New Amyloid β Variant Favoring Oligomerization in Alzheimer's-type Dementia, Ann. Neurol., 63 (2008) 377-387.

T.J. Grabowski, H.S. Cho, J.P.G. Vonsattel, G.W. Rebeck, S.M. Greenberg, Novel Amyloid Precursor Protein Mutation in an Iowa Family with Dementia and Severe Cerebral Amyloid Angiopathy, Ann. Neurol., 49 (2001) 697-705.

O. Bugiani, A. Padovani, M. Magoni, G. Andora, M. Sgarzi, M. Savoiardo, A. Bizzi, G. Giaccone, G. Rossi, F. Tagliavini, An Italian type of HCHWA, Neurobiol. Aging, 19 (1998) S238.

S.-H. Chong, J. Yim, S. Ham, Structural heterogeneity in familial Alzheimer's disease mutants of amyloid-beta peptides, Mol. BioSyst., 9 (2013) 997-1003.

N. Sureshbabu, R. Kirubagaran, H. Thangarajah, E.J.P. Malar, R. Jayakumar, Lipid-Induced Conformational Transition of Amyloid β Peptide Fragments, J. Mol. Neurosci., 41 (2010) 368-382.

A. Quist, I. Doudevski, H. Lin, R. Azimova, D. Ng, B. Frangione, B. Kagan, J. Ghiso, R. Lal, Amyloid Ion Channels: A Common Structural Link for Protein-Misfolding Disease, Proc. Natl. Acad. Sci. U.S.A., 102 (2005) 10427-10432.

T.L. Williams, L.C. Serpell, Membrane and surface interactions of Alzheimer’s Aβ peptide – insights into the mechanism of cytotoxicity, FEBS Journal, 278 (2011) 3905-3917.

L. Connelly, H. Jang, F. Teran Arce, R. Capone, S.A. Kotler, S. Ramachandran, B.L. Kagan, R. Nussinov, R. Lal, Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-d-Enantiomer of Alzheimer’s β-Amyloid Peptide: Relevance to the Ion Channel Mechanism of AD Pathology, J. phys. Chem. B, 116 (2012) 1728-1735.

S.T. Ngo, M.T. Nguyen, N.T. Nguyen, V.V. Vu, The effects of A21G mutation on transmembrane amyloid beta (11–40) trimer: an in silico study, J. Phys. Chem. B, 121 (2017) 8467-8474.

S.T. Ngo, H.M. Hung, K.N. Tran, M.T. Nguyen, Replica exchange molecular dynamics study of the amyloid beta (11-40) trimer penetrating a membrane, RSC Adv., 7 (2017) 7346-7357.

I. Bertini, L. Gonnelli, C. Luchinat, J. Mao, A. Nesi, A New Structural Model of Aβ40 Fibrils, J. Am. Chem. Soc., 133 (2011) 16013-16022.

P. Schrödinger LLC, The PyMOL molecular graphics system, Versio1 1.3r1, 2010.

C. Oostenbrink, A. Villa, A.E. Mark, W.F. Van Gunsteren, A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6, J. Comput. Chem., 25 (2004) 1656-1676.

J.F. Nagle, Area/Lipid of Bilayers from NMR, Biophys. J., 64 (1993) 1476-1481.

H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, a.J. Hermans, Intermolecular Forces, Reidel, Dordrecht, Jerusalem, Israel, 1981.

S. Côté, R. Laghaei, P. Derreumaux, N. Mousseau, Distinct Dimerization for Various Alloforms of the Amyloid-Beta Protein: Aβ1–40, Aβ1–42, and Aβ1–40(D23N), J. Phys. Chem. B, 116 (2012) 4043-4055.

B. Tarus, T.T. Tran, J. Nasica-Labouze, F. Sterpone, P.H. Nguyen, P. Derreumaux, Structures of the Alzheimer’s Wild-Type Aβ1-40 Dimer from Atomistic Simulations, J. Phys. Chem. B, 119 (2015) 10478-10487.

S.T. Ngo, H.M. Hung, D.T. Truong, M.T. Nguyen, Replica exchange molecular dynamics Study of the Truncated Amyloid Beta (11-40) Trimer in Solution, Phys. Chem. Chem. Phys., 19 (2017) 1909-1919.

S.T. Ngo, X.-C. Luu, M.T. Nguyen, C.N. Le, V.V. Vu, In silico studies of solvated F19W amyloid β (11-40) trimer, RSC Adv, 7 (2017) 42379-42386.

M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers, SoftwareX, 1–2 (2015) 19-25.

W.G. Touw, C. Baakman, J. Black, T.A.H. te Beek, E. Krieger, R.P. Joosten, G. Vriend, A Series of PDB-related databanks for everyday needs, Nucleic Acids Res, 43 (2015) D364-D368.

Erik G. Marklund, Matteo T. Degiacomi, Carol V. Robinson, Andrew J. Baldwin, Justin L.P. Benesch, Collision cross sections for structural proteomics, Structure, 23 (2015) 791-799.

E. Papaleo, P. Mereghetti, P. Fantucci, R. Grandori, L. De Gioia, Free-Energy Landscape, Principal Component Analysis, and Structural Clustering to Identify Representative Conformations from Molecular Dynamics Simulations: The Myoglobin Case, J. Mol. Graph. Model., 27 (2009) 889-899.

Z. Qian, Q. Zhang, Y. Liu, P. Chen, Assemblies of amyloid-β30–36 hexamer and its G33V/L34T mutants by replica-exchange molecular dynamics simulation, PLOS ONE, 12 (2017) e0188794.

S.T. Ngo, H.M. Hung, N.D. Hong, N.T. Tung, The influences of E22Q mutant on solvated 3Aβ11-40 peptide: A REMD study, J Mol Graph Model, 83 (2018) 122-128.

X. Yang, G. Meisl, B. Frohm, E. Thulin, T.P.J. Knowles, S. Linse, On the role of sidechain size and charge in the aggregation of A beta 42 with familial mutations, Proc Natl Acad Sci U S A 115 (2018) E5849-E5858.

Y. Fezoui, D.B. Teplow, Kinetic studies of amyloid β-protein fibril assembly: differential effects of α-helix stabilization, J. Biol. Chem., 277 (2002) 36948-36954.

E. Papaleo, P. Mereghetti, P. Fantucci, R. Grandori, L. De Gioia, Free-Energy Landscape, Principal Component Analysis, and Structural Clustering to Identify Representative Conformations from Molecular Dynamics Simulations: The Myoglobin Case, J Mol Graph Model, 27 (2009) 889-899.

S.T. Ngo, D.T. Truong, N.M. Tam, M.T. Nguyen, EGCG inhibits the oligomerization of amyloid beta (16-22) hexamer: theoretical studies, J. Mol. Graph. Model., 76 (2017) 1-10.

M. Kouza, A. Banerji, A. Kolinski, I. Buhimschi, A. Kloczkowski, Relationships between Mechanostability, Aggregation Rate and Binding Affinity of Peptides: Insights from All-ATOM Modeling in Explicit Solvent, Biophys. J., 110 (2016) 386a.

M.H. Viet, P.H. Nguyen, S.T. Ngo, M.S. Li, P. Derreumaux, Effect of the Tottori Familial Disease Mutation (D7N) on the Monomers and Dimers of Abeta40 and Abeta42, ACS Chem Neurosci, 4 (2013) 1446-1457.

Anton NB. “Cara Mencegah Penyakit Cepat Lupa ( Dementia ) Pada Usia Muda.” Anton NB, 22 Oct. 2019, Accessed 7 July 2020.

D.P. Tieleman, S.J. Marrink, H.J.C. Berendsen, A Computer Perspective of Membranes: Molecular Dynamics Studies of Lipid Bilayer Systems, BBA-Rev. Biomembranes, 1331 (1997) 235-270.

H.M. Hung, V.P. Nguyen, S.T. Ngo, M.T. Nguyen, Theoretical Study of the Interactions between the first Transmembrane Segment of NS2 Protein and a POPC Lipid Bilayer, BioPhys Chem, 217 (2016) 1-7.

DOI: Display counter: Abstract : 464 views. PDF : 132 views.


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 


Copyright by