Tuning Electronic Transport Properties of Zigzag Graphene Nanoribbons with Stone-Wales Defect

Tien Thanh Nguyen, Hoc Thai Bui, Ut Van Nguyen, Tuan Le

Abstract


Influences of the symmetric Stone-Wales (SW) defect on the electronic transport properties of the zigzag graphene nanoribbons (ZGNRs) has been studied using $\it{ab}$ $\it{ initio}$ simulation based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) technique. The calculated transmission spectra T(E) at various bias windows, device densities of states (DDOS), current characteristics as well as local density of states (LDOS) of the defective asymmetric and symmetric ZGNRs are presented in comparison of those for the pristine ZGNRs. It has been established the metallic character of the electronic transport in asymmetric ZGNRs, and in symmetric ones, the current has a semiconductor behavior, with negative differential resistance (NDR) effect. Symmetric SW defect, as a most unfavorable SW defect type for electric conductance, remarkably decreases the current values, but does not change the character of conductivity in both the asymmetric and symmetric ZGNRs. NDR has been explained by the altering by SW defect the number of frontier molecular orbitals entering bias windows.

Keywords


density-functional theory, non-equilibrium, Green function, electronic transport, graphene nanoribbon, transmission spectrum, current\textendash voltage characteristics

Full Text:

PDF

References


K. S. Novoselov, A.K.Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V.Grigorieva and A. A. Firsov,

Science 306 (2004) 666.

K. S. Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, M.I.Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A.

Firsov, Nature 438 (2005) 197.

J. P. Llinas, A. Fairbrother, G. B. Barin, W. Shi, K. Lee, S. Wu, B. Y. Choi, R. Braganza, J. Lear, N. Kau,

W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. M¨ullen, F. Fischer, A. Zettl, P. Ruffieux,

E. Yablonovitch, M. Crommie, R. Fasel and J. Bokor, Nature Communications 8 (2017) 633.

M. Choudhury, Y. Yoon, J. Guo and K. Mohanram, Proceedings of the 45th annual Design Automation Conference

(2008) 272–277.

F. Banhart, J. Kotakoski and A. V. Krasheninnikov, Acs Nano 5 (2011) 26.

J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik and M. Batzill, Nature Nanotechnology 5 (2010) 326.

G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, D. Y. Kim and K. M. Ho, Physical Review Letters 95 (2005)

L. Li, S. Reich and J. Robertson, Physical Review B 72 (2005) 184109.

Z. Li, B. Huang and W. Duan, Nanoscience and Nanotechnology 10 (2010) 5374.

X. Li, D. Zou, B. Cui, C. Fang, J. Zhao, D. Li and D. Liu, The Royal Society of Chemistry 2017 7 (2017) 25244.

K. Li and X. H. Zhang, Physics Letters A 382 (2018) 1167.

W. L. F. H. Meng, J. H. Zhao and X. H. Jiang, Theoretical and Computational Chemistry 16 (2017) 1750032.

Y. Ren and K. Q. Chene, Phys. Rev. Lett. 107 (2010) 044514.

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976) 5188.

S. Grimme, J. Comput. Chem. 27 (2006) 1787.

R. Landauer, IBM J. Res. Dev. 1 (1957) 223.

J. Ma, D. Alf`e, A. Michaelides and E. Wang, Physical Review B 80 (2009) 033407.

R. Dettori, E. Cadelano and L. Colombo, Physics: Condensed Matter 24 (2012) 104020.

H. Zeng, J. P. Leburton, Y. Xu and J. Wei, Nanoscale Research Letters 6 (2011) 254.

Y. Zou, M. Long, M. Li, X. Zhang, Q. Zhang and H. Xu, The Royal Society of Chemistry 5 (2015) 19152.




DOI: https://doi.org/10.15625/0868-3166/28/3/12670

Refbacks

  • There are currently no refbacks.


Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by