Effect of TiO\(_2\) anatase nanocrystallite on electrical properties of PPy/TiO\(_2\) nanocomposite

Huyen Ngoc Duong, Thanh-Phuong Nguyen, Tung Trong Nguyen
Author affiliations

Authors

  • Huyen Ngoc Duong
  • Thanh-Phuong Nguyen School of Engineering Physics, Hanoi University of Science and Technology
  • Tung Trong Nguyen

DOI:

https://doi.org/10.15625/0868-3166/28/1/11036

Keywords:

PPy, TiO2 anatase, nanocomposite PPy/TiO2, complex impedance spectrum

Abstract

Polypyrrole/titanium dioxide nanocomposite (PPy/TiO2) was synthesized by in-situ chemical polymerization of pyrrole (Py) monomer in colloidal suspension of TiO2 anatase. TEM images show that TiO2 anatase nanoparticles with size of around 3–4 nm are randomly imbedded on the surface and inside of PPy grain. The random distribution of TiO2 anatase nanoparticle in PPy matrix form variety of p-n contact on the surface and inside of the materials. As expectation, the charge exchange between oxygen and the PPy affect the p-n depletion regions and then modify the electrical properties of PPy. Upon exposure to the open air the conductivity of the PPy/TiO2 nanocomposite exhibits an increase of about 20 folds much larger than that of neat PPy. The enhancement is accounted for the modification of in the surface conductance of PPy/TiO2 nanocomposite as a combination of the TiO2 coupling and oxygen interaction.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Shirakawa, H., et al., Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (Ch)X. Journal of the Chemical Society-Chemical Communications, 1977(16): p. 578-580. DOI: https://doi.org/10.1039/c39770000578

Skotheim, T.A. and J. Reynolds, Handbook of Conducting Polymers, 2 Volume Set. 2007: CRC press. DOI: https://doi.org/10.1201/b12346

Janssen, R.A., et al., Photoinduced electron transfer from π‐conjugated polymers onto Buckminsterfullerene, fulleroids, and methanofullerenes. The Journal of chemical physics, 1995. 103(2): p. 788-793. DOI: https://doi.org/10.1063/1.470110

Das, T.K. and S. Prusty, Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 2012. 51(14): p. 1487-1500. DOI: https://doi.org/10.1080/03602559.2012.710697

Diaz, A.F. and K.K. Kanazawa, Electrochemical Polymerization of Pyrrole. J. Chem. Soc., Chem. Comm., 1979. 14: p. 635-36. DOI: https://doi.org/10.1039/c39790000635

Šetka, M., J. Drbohlavová, and J. Hubálek, Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors, 2017. 17(3): p. 562. DOI: https://doi.org/10.3390/s17030562

Ateh, D.D., H.A. Navsaria, and P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface, 2006. 3(11): p. 741-52. DOI: https://doi.org/10.1098/rsif.2006.0141

Sun, W. and X. Chen, Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor. Journal of Power Sources, 2009. 193(2): p. 924-929. DOI: https://doi.org/10.1016/j.jpowsour.2009.04.063

Yongfang, L. and Q. Renyuan, On the nature of redox processes in the cyclic voltammetry of polypyrrole nitrate in aqueous solutions. Journal of Electroanalytical Chemistry, 1993. 362(1-2): p. 267-272. DOI: https://doi.org/10.1016/0022-0728(93)80029-H

Gangopadhyay, R. and A. De, Conducting polymer nanocomposites: a brief overview. Chemistry of materials, 2000. 12(3): p. 608-622. DOI: https://doi.org/10.1021/cm990537f

Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Letters to nature, 1972. 238: p. 37-38. DOI: https://doi.org/10.1038/238037a0

Hashimoto, K., H. Irie, and A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics, 2005. 44(12R): p. 8269. DOI: https://doi.org/10.1143/JJAP.44.8269

Nakata, K. and A. Fujishima, TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012. 13(3): p. 169-189. DOI: https://doi.org/10.1016/j.jphotochemrev.2012.06.001

Byranvand, M.M., et al., A Review on Synthesis of Nano-TiO2 via Different Methods Journal of Nanostructures, 2013. 3: p. 1-9.

Huyen, D.N., et al., Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors (Basel), 2011. 11(2): p. 1924-31. DOI: https://doi.org/10.3390/s110201924

Lenz, D.M., M. Delamar, and C.A. Ferreira, Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel. Journal of Electroanalytical Chemistry, 2003. 540: p. 35-44. DOI: https://doi.org/10.1016/S0022-0728(02)01272-X

Jurewicz, K., et al., Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 2001. 347(1): p. 36-40. DOI: https://doi.org/10.1016/S0009-2614(01)01037-5

Gao, Y., et al., PPy film/TiO2 nanotubes composite with enhanced supercapacitive properties. RSC Adv., 2014. 4(52): p. 27130-27134. DOI: https://doi.org/10.1039/C4RA03014A

Tung, N.T. and D.N. Huyen, Effect of HCl on the Formation of TiO2 Nanocrystallites. Journal of Nanomaterials, 2016. 2016. DOI: https://doi.org/10.1155/2016/6547271

Tung Nguyen, T., X.D. Mai, and N.H. Duong, Simultaneous Synthesis of Anatase Colloidal and Multiple‐branched Rutile TiO2 Nanostructures. Bulletin of the Korean Chemical Society, 2017. 38(3): p. 401-405. DOI: https://doi.org/10.1002/bkcs.11101

Li, G., et al., The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. Journal of the American Chemical Society, 2008. 130(16): p. 5402-5403. DOI: https://doi.org/10.1021/ja711118u

Vigmond, S.J., V. Ghaemmaghami, and M. Thompson, Raman and resonance-Raman spectra of polypyrrole with application to sensor–gas probe interactions. Canadian journal of chemistry, 1995. 73(10): p. 1711-1718. DOI: https://doi.org/10.1139/v95-209

Furukawa, Y., et al., Raman spectra of polypyrrole and its 2,5-13C-substituted and C-deuterated analogues in doped and undoped states. Synthetic Metals, 1988. 24(4): p. 329-341. DOI: https://doi.org/10.1016/0379-6779(88)90309-8

Santos, M.J.L., A.G. Brolo, and E.M. Girotto, Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica Acta, 2007. 52(20): p. 6141-6145. DOI: https://doi.org/10.1016/j.electacta.2007.03.070

Hoeben, F.J., et al., About supramolecular assemblies of π-conjugated systems. Chemical reviews, 2005. 105(4): p. 1491-1546. DOI: https://doi.org/10.1021/cr030070z

Tung, N.T. and D.N. Huyen, Effect of TiO2 Rutile Additive on Electrical Properties of PPy/TiO2 Nanocomposite. Journal of Nanomaterials, 2016. 2016: p. 6. DOI: https://doi.org/10.1155/2016/4283696

Li, X., R. Ramasamy, and P.K. Dutta, Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications. Sensors and Actuators B: Chemical, 2009. 143(1): p. 308-315. DOI: https://doi.org/10.1016/j.snb.2009.09.021

Inganäs, O., T. Skotheim, and I. Lundström, Polypyrrole‐semiconductor Schottky barriers. Journal of Applied Physics, 1983. 54(6): p. 3636-3639. DOI: https://doi.org/10.1063/1.332406

Abthagir, P.S. and R. Saraswathi, Junction properties of metal/polypyrrole Schottky barriers. Journal of applied polymer science, 2001. 81(9): p. 2127-2135. DOI: https://doi.org/10.1002/app.1648

Downloads

Published

17-07-2018

How to Cite

[1]
H. N. Duong, T.-P. Nguyen and T. T. Nguyen, Effect of TiO\(_2\) anatase nanocrystallite on electrical properties of PPy/TiO\(_2\) nanocomposite, Comm. Phys. 28 (2018) 87. DOI: https://doi.org/10.15625/0868-3166/28/1/11036.

Issue

Section

Papers
Received 30-12-2017
Accepted 21-03-2018
Published 17-07-2018