Computational Design of Mn4 Molecules with Strong Intramolecular Exchange Coupling

Nguyen Anh Tuan, Nguyen Van Thanh, Tran Thi Thuy Nu, Nguyen Huy Sinh, Vu Van Khai, Dam Hieu Chi, Shin-ichi Katayama


The geometric and electronic structures of [Mn44+Mn3+33-L2 -)33-X -(OAc) - 3(dbm) -3] (L = O, X = F, dbmH = dibenzoyl-methane) molecule has been studied by first-principles calculations. It was shown in our previous paper that the ferrimagnetic structure of Mn$^{4 + }$Mn$^{3 + }_{3}$ molecules is determined by the $\pi $ type hybridization between the $d_{z^2}$ orbitals at the three high-spin Mn$^{3 + }$ ions and the $t_{2g}$ orbitals at the Mn$^{4 + }$ ion by the $p$ orbitals at the $\mu _{3}$-L$^{2 - }$ ions. To design new Mn$^{4 + }$Mn$^{3 + }_{3}$ molecules having much more stable ferrimagnetic state, one approach is suggested. That is controlling the Mn$^{4 + }$-($\mu _{3}$-L$^{2 - })$-Mn$^{3 + }$ exchange pathways by rational variation in $\mu _{3}$-L ligands to strengthen the hybridization between Mn ions. By this ligand variation, $J_{AB}$ can be enhanced by a factor of 3. Our results should facilitate the rational synthesis of new single-molecule magnets.

Full Text:


DOI: Display counter: Abstract : 157 views. PDF : 63 views.


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 


Copyright by