Evolution of Boron Nitride Structure upon Heating

Nguyen Thi Thuy Hang


The evolution of structure upon heating of hexagonal boron nitride nanoribbon (h-BNNR) model is studied via molecular dynamics simulation. The temperature is increased from 50K to 5500K in order to observe the change of the structure during heating process. Various thermodynamic quantities related to the change of structure are calculated such as radial distribution functions, Lindemann criterion, the occurrence/growth of liquidlike atoms, the formation of clusters, and ring statistics. The melting point is defined. The phase transition from solid to liquid states exhibits first order behavior.


Melting of hexagonal boron nitride nanoribbon; Melting criterion; phase transition; cluster.

Full Text:



D. Jin-Xiang, Z. Xiao-Kang, Y. Qian, W. Xu-Yang, C. Guang-Hua, and H. De-Yan, Chinese Phys. B 18 (2009) 4013.

C. Li, Y. Bando, C. Zhi, Y. Huang, and D. Golberg, Nanotechnology 20 (2009) 385707.

K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 54 (1996) 17954.

K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438 (2005) 197.

Y.-W. Son, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 97 (2006) 216803.

Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim, Phys. Rev. Lett. 96 (2006) 136806.

A.K. Geim and K.S. Novoselov, Nature materials 6 (2007) 183.

M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98 (2007) 206805.

I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 3 (2008) 654.

W.L. Wang, S. Meng, and E. Kaxiras, Nano Lett. 8 (2008) 241.

C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, and K.L. Shepard, Nat. Nanotechnol. 5 (2010) 722.

B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, Phys. Rev. B 79 (2009) 113409.

C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102 (2009) 195505.

G. Slotman and A. Fasolino, J. Phys.: Cond. Mat. 25 (2012) 045009.

H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10 (2010) 5049.

D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS nano 4 (2010) 2979.

M.S. Bresnehan, M.J. Hollander, M. Wetherington, M. LaBella, K.A. Trumbull, R. Cavalero, D.W. Snyder, and J.A. Robinson, ACS nano 6 (2012) 5234.

Z. Yu, M. Hu, C. Zhang, C. He, L. Sun, and J. Zhong, J. Phys. Chem. C 115 (2011) 10836.

D.-H. Kim, H.-S. Kim, M.W. Song, S. Lee, and S.Y. Lee, Nano Convergence 4 (2017) 13.

K. Albe, W. Möller, and K.-H. Heinig, Radiat. Ef. Defect. S. 141 (1997) 85.

D.W. Brenner, Phys. Rev. B 42 (1990) 9458.

S. Plimpton, J. Comput. Phys. 117 (1995) 1.

S. Le Roux and V. Petkov, J. Appl. Crystallogr. 43 (2010) 181.

W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1996) 33.

K. Zakharchenko, A. Fasolino, J. Los, and M. Katsnelson, J. Phys.: Cond. Mat. 23 (2011) 202202.

N.H. March and M.P. Tosi, Introduction to liquid state physics (2002) World Scientific.

S. Gleiman, C.-K. Chen, A. Datye, and J. Phillips, Journal of materials science 37 (2002) 3429.

N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17 (1966) 1133.

N.D. Mermin, Phys. Rev. 176 (1968) 250.

L.D. Landau and E.M. Lifshitz, Course of theoretical physics, Vol. 5 (2013) Elsevier.

V. Bedanov, G. Gadiyak, and Y.E. Lozovik, Phys. Lett. A 109 (1985) 289.

DOI: https://doi.org/10.15625/0868-3166/27/4/10752


  • There are currently no refbacks.

Editorial Office:

Communications in Physics

1st Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7102 

Email: cip@vjs.ac.vn

Copyright by