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Abstract. After receiving very interesting results from investigations of chiral nuclear matter
based on the extended Nambu-Jona–Lasinio model (ENJL) included the scalar-vector eight-point
interaction, a fundamental question of nuclear physics is what happens to chiral nuclear matter
as it is compressed or heated. At very high density and temperature, quarks and gluons come into
play and a transition is expected to happen from a phase of nuclear matter consisting of confined
hadrons and mesons to a state of ‘liberated’ quarks and gluons. In this paper, we investigate the
hadron-quark (HQ) phase transition occurs beyond the chiral phase transition in the nuclear mat-
ter. The results show that there exits a quarkyonic-like phase, appeared just before deconfinement,
when the chiral symmetry is restored but the elementary excitation modes are still nucleonic.
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I. INTRODUCTION

Recently, the mechanism of the hadron-quark (HQ) deconfinement is one of hot topics in
modern physics. The confinement mechanism is a intrinsic property of quantum chromodynamics
(QCD). It is an effect of asymptotically free theory [1], i.e. as the exchanged momentum increases
or as the mutual distance decreases, interactions between quarks and gluons become weaker. It
means, at very high density and/ or temperatures [2] the interactions which confine quarks and glu-
ons inside hadrons should become sufficiently weak to release them. The phase where quarks and
gluons are deconfined at very highdensity and/ or temperatures is termed the quark-gluon plasma
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(QGP). The existence of such a phase of strongly interacting matter at zero net-baryon density
and temperatures larger than ∼ 170 MeV has been established by lattice QCD calculations. There
have been proposed and discussed various types of scenario concerned with the hadron-quark de-
confinement transitions at high-density and high-temperature regions, but it is still unclear, even,
whether the phase transition is the first order or the cross over [3]. Unique assumption in this
paper is that the phase transition is of the first order as suggested by many model studies [4] and
ours [15]. One of the direct consequences of this assumption is the emergence of the HQ mixed
phase during the phase transition.

The transition between confinement and deconfinement is of the phase transition in chiral
symmetry between hadronic matter and quark-gluon phase. Theoretical studies of HQ phase tran-
sition and/or the phase diagram for HQ many-body systems at finite density and temperature are
the most recent interests. In extremely dense and/or hot environment for HQ systems [3] there
may exist various possible phases with rich symmetry breaking pattern. The first principle lattice
calculations have examined theoretically the extremely high density and/or temperature system
which is reproduced experimentally by the relativistic heavy ion collisions (RHIC). However, due
to the so-called sign problem in the finite density system the lattice QCD simulation is not straight-
forwardly feasible. Thus, to deal with finite density system an effective model based on QCD can
be an useful tool. Hence, the chiral phase transition has been investigated by using the various
effective models at finite density and temperature. However, due to the quark confinement on the
hadron phase it is still difficult to derive the definite results on the HQ phase transition.

For the symmetric nuclear matter, it is necessary to describe the properties of nuclear sat-
uration and chiral symmetry restoration. The saturation property of nuclear matter is described
successfully by the Walecka’s model [5]. The underlying microscopic mechanism for saturation
is a balance between repulsive and attractive forces among nucleons at this particular value of the
baryon density. Although this model has given many successful results for nuclear matter and
finite nuclei, at first stage this model has no chiral symmetry - a symmetry plays an important
role in QCD. On the other hand, one of the successful effective models of QCD related to the
chiral symmetry and the dynamical chiral symmetry breaking is the Nambu-Jona-Lasinio (NJL)
model [6]. NJL model gives many important results for hadronic world [7] and the dense quark
matter [8, 9]. Hence, NJL model is used to investigate the stability of nuclear matter [10], and
beyond the mean-field theory [11, 12]. Unfortunately, the nuclear saturation property cannot be
reproduced if starting from the original NJL model with chiral symmetry and the nucleon is re-
garded as a fundamental fermion, not composite one. Fortunately, the nuclear saturation property
is well reproduced if the scalar-vector and isoscalar-vector eight-point interactions are introduced
holding the chiral symmetry in the NJL model, in which the nucleon is still treated as a funda-
mental fermion [13]. Recently, we reconsidered phase structures of chiral nuclear matter at finite
density and temperature using an extended version of the NJL model with a scalar-vector interac-
tion [14, 15]. The observed saturation properties of nuclear matter at ρB = ρ0 is reproduced well
by this ENJL version. It reveals a first-order liquid-gas phase transition occurring at subsaturated
densities as presented in any realistic model of nuclear matter; Moreover, the model considered
by [15] predicts a restoration of chiral symmetry at high baryon densities, ρB & 2.2ρ0 for T . 171
MeV, and at high temperatures T & 171 MeV for ρB . 2.2ρ0 .

For the quark-gluon matter, we use the effective models of QCD such as the NJL model or
the MIT bag model for quark matter have been actively done instead. We, hereafter, use the MIT
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bag model for simplicity. The quark-gluon matter undergoes a phase transition to the so called
quark-gluon plasma phase (QGP) at high temperatures. We may learn more about their structure
by studying how hadrons melt. So, hadrons have to be melted first, before filling the space with
thermal quarks and gluons.

In this paper, the nuclear matter is described by the ENJL model [15], and QGP is described
by the MIT bag model. We then construct at high temperatures a nuclear matter EoS from to that
of Ref. [15] and put in equilibrium with the MIT bag EoS [16] for the QGP phase. It is expected
that a HQ phase transition occurs at high density and temperature beyond the chiral symmetry
restoration in nuclear matter.

This paper is organized as follows. We briefly recapitulate the ENJL model for chiral
nuclear matter at finite density and temperature following Ref. [15] in the next section,. In Sec.
III, the hadron-quark phase transition at high density and temperature is described basing on this
model. A concluding remarks is given in the last section.

II. THE CHIRAL NUCLEAR MATTER

We use a modification version of the original σ −ω model [5] for hadronic matter, as
presented in Ref. [15]. In this model, the EoS, i.e., the pressure P as a function of baryochemical
potential µ and temperature T , can be derived from the following Lagrangian investigated in the
meanfield (or one-loop, or Hartree) approximation

L = ψ̄(i∂̂ +µγ0)ψ +
Gs

2
[(ψ̄ψ)2 +(ψ̄iγ5~τψ)2]− Gv

2
[(ψ̄γ

µ
ψ)2 +(ψ̄γ5γ

µ
ψ)2]

+
Gsv

2
[(ψ̄ψ)2+(ψ̄iγ5~τψ)2][(ψ̄γ

µ
ψ)2+(ψ̄γ5γ

µ
ψ)2], (1)

where~τ = ~σ/2 with ~σ Pauli matrices, µ is the baryon chemical potential, and Gs, Gv and Gsv are
coupling constants.

At nuclear scale, fermion interactions are in bound states as so-called bosonization,

σ = ψ̄ψ, ~π = ψ̄iγ5~τψ, ωµ = ψ̄γµψ, φ µ = ψ̄γ5γµψ.

yielding

L = ψ̄(i∂̂ +µγ0)ψ +[Gs +Gsv(ω
2 +φ

2)ψ̄(σ + iγ5~τ~π)ψ− [Gv−Gsv(σ
2 +π

2)]ψ̄(ω̂ + γ5φ̂)ψ

−Gs

2
(σ2 +π

2)+
Gv

2
(ω2 +φ

2)−3
Gsv

2
(σ2 +π

2)(ω2 +φ
2). (2)

In the mean-field approximation, the σ , π , ω , and φ fields have the ground state expectation
values

〈σ〉= u, 〈π i〉= 0, 〈ωµ〉= ρBδ0µ , 〈φ µ〉= 0. (3)

Hence,

LMFT = ψ̄(i∂̂ −m∗+ γ0µ
∗)ψ−U(ρB ,u), (4)
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where

m∗ = −G̃su, G̃s = Gs +Gsvρ
2
B
, (5)

µ
∗ = µ− [Gv−Gsv(u2 + v2)]ρB , (6)

U(ρB ,u) =
1
2
(
Gsu2−Gvρ

2
B
+3Gsvu2

ρ
2
B

)
. (7)

Based on Lagrangian (4) the thermodynamic potential is derived

Ω(ρB ,u) = U(ρB ,u)+2N f

∫ d3k
(2π)3 [Ek+T ln(n−n+)], (8)

where n∓=
[
eE∓/T+1

]−1, E∓=Ek∓µ∗, Ek=
√

k2+m∗2, and N f =2 for nuclear matter and N f =1
for neutron matter.

The ground state of nuclear matter is determined by the minimum condition

∂Ω

∂u
= 0

or

u = 2N f

∫ d3k
(2π)3

m∗

Ek
(n−+n+−1), (9)

which is called the gap equation.
In terms of the baryon density

ρB =−
∂Ω

∂ µB

= 2N f

∫ d3k
(2π)3 (n−−n+), (10)

the equations of state read

P = −m∗2

2G̃s
− Gv

2
ρ

2
B
+(µ−µ

∗)ρB

−2N f

∫ d3k
(2π)3 [Ek +T ln(n−n+)] , (11)

E =
m∗2

2G̃s
+

Gv

2
ρ

2
B
+2N f

∫ d3k
(2π)3 Ek(n−+n+−1). (12)

Table 1. Values of parameters and physical quantities.

Gs(fm2) Gv/Gs Gsv/Gs m0(MeV) m∗/mN K0(MeV)

[5] 9.573 1.219 - - 0.556 540

[14] 8.507 0.933 1.107 41.26 0.684 285.91

[15] 8.897 0.947 1.073 0 0.663 267.23

Expt. ∼10.145 ∼1.447 - - ∼0.6 200 - 300
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The model reproduces well-observed saturation properties of nuclear matter at the satura-
tion density ρB = ρ0 . Values of parameters and physical quantities are given in Table 1, based on
requiring that

mN =−G̃suvac = 939 MeV, (13)

with uvac satisfying the gap equation (9) taken at vacuum, T = 0, and ρB = 0, and

Ebin=−mN+E /ρB'−15.8 MeV at ρB'0.17 fm−3 and T = 0. (14)

The dependence of the binding energy on baryon density is shown in Fig. 1.

 

Fig. 1. Nuclear binding energy as a function of baryon density. The green short dashed,
red long dashed, and blue solid lines are taken from Refs. [5], [14], and [15], respectively.

The model gives two very interesting results. Firstly, it reveals a first-order liquid-gas phase
transition occurring at subsaturated densities, from µB ' 923 MeV and T = 0 and extending to a
crossover critical end point (CEP) at µB ' 922 MeV and T ' 18 MeV. Secondly, the model predicts
an exact restoration of chiral symmetry at high baryon densities, ρB & 2.2ρ0 for 0 . T . 171
MeV and µB & 980 MeV, and/or at high temperature, T & 171 MeV for µB . 980 MeV and
ρB . 2.2ρ0 . In the temperature-chemical potential plane a second-order chiral phase transition
occurs at µB ' 980 MeV and T = 0, and extends to a tricritical point (CP) at µB ' 980 MeV and
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T ' 171 MeV, signaling the onset of a first-order phase transition for T & 171 MeV. The phase
diagram of the two features is displayed in Fig. 2. It displays a clear first-order liquid-gas transition
of symmetric nuclear matter at subsaturation and a chiral phase transition of nuclear matter at high
baryon density (with the second-order) or at high temperature (with the first-order).

T ≃ 18 MeV CEP
gas-liquid

T ≃ 171 MeV
CP

chiral restoration
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200
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Fig. 2. The phase diagrams of the chiral nuclear matter in the temperature-chemical po-
tential plane. The dashed line denotes a second-order transition. The solid line denotes
a first-order phase transition. The critical end point (T ' 18 MeV, µB ' 922 MeV) signs
CEP. The tricritical point (T ' 171 MeV, µB ' 980 MeV) signs CP, where the line of
second-order chiral phase transition meets the line of first-order phase transition. The
shadow region is the emergence of hadron-quark mixed phases during the hot chiral phase
transition.

III. THE HADRON-QUARK PHASE TRANSITION

In this section we discuss the emergence of the inhomogeneous structure associated with the
hadron-quark deconfinement transition. For this purpose we need both EOSs of hadron matter and
quark-gluon plasma as realistically as possible. As we mentioned in the last section, no one knows
how to exactly calculate the hadron-quark phase transition at high density and high temperature
regions. The studies by using the effective models of QCD such as the MIT bag model or the NJL
model have been actively done instead, we here use the MIT bag model for simplicity.
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III.1. Hadron phase at chiral limit
We now study the chiral phase transitions at high temperature. Form the phase diagram

(Fig. 2) and ρB dependence of the chiral condensate (Fig. 3), we realize that the chiral phase
transition at high temperature is the first-order and above T ' 171 MeV. For example at T =
190 MeV, the shadow region shows that the chiral condensate is a multivalued function and that it
is a mixture state of hot nuclear phase and hot chiral phase.

T = 0
T = 50 MeV
T = 140 MeV
T = 170 MeV
T = 180 MeV
T = 190 MeV
T = 200 MeV

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

ρB/ρ0

u
/u
0

Fig. 3. The ρB dependence of the chiral condensate at various values of T . For example
at T = 190 MeV, the shadow region shows that there exits a mixture state of hot nuclear
phase and hot chiral phase.

Hence, the integral terms in thermodynamic potential, gap equation, baryon density, energy
density and EoS can be expanded about chiral limit. Thus, Eqs. (9), (10), (11), and (12) lead

u ' uvac−
N f

π2 G̃suT 2[Li2(−e−µ∗/T )+Li2(−eµ∗/T )
]
, (15)

ρB '
N f

π2 T 3[Li3(−e−µ∗/T )−Li3(−eµ∗/T )
]
, (16)
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EHD ' −Gs

2
u2

vac+
Gv

2
ρ

2
B
−

6N f T 4

π2

[
Li4(−e−µ∗/T )+Li4(−eµ∗/T )

]
, (17)

PHD ' −Gs

2
u2

vac+
Gv

2
ρ

2
B
−

2N f

π2 T 4[Li4(−e−µ∗/T )+Li4(−eµ∗/T )
]
. (18)

Here, Lin is the polylogarithm function of n order (Lin(z) = ∑
∞
k=1 zk/kn).

Figures 2 and 3 show that when T > 171 MeV the chiral condensate can be dropped to zero
even at very small values of the baryon density and/or the chemical potential. This is suggested
that, when matter is heated sufficiently, hadrons become massless and begin to overlap and then
quarks and gluons can freely travel over larger space-time distances. Within this picture, T '
171 MeV is the limiting temperature for the deconfinement phase transition between hadrons and
quarks and gluons, that we may call the chiral limit.

At high density and/ or high temperature, the transition beyond the chiral symmetry restora-
tion just after deconfinement is the so-called hadron-quark transition. The system becomes packed
densely with nucleons as the density increases to about 2ρ0 . At higher densities they will even start
to overlap. Therefore, one expects that the system in terms of quark and gluon degrees of freedom
is more appropriate to described in around densities of a few times nuclear matter ground state
density.

Similarly, at high temperature, even at low baryon density, nuclear matter consists not only
of nucleons but also of thermally excited hadrons, the temperature affects the momentum scale for
scattering events between hadrons. As the temperature is on the order of or higher than ΛQCD , scat-
tering between hadrons starts to probe their quark-gluon substructure. Thus, one expects that the
system in terms of quarks and gluons is more appropriate to described above a certain temperature.

From these considerations the picture is the following: for very low baryon chemical po-
tential µB ∼ 0, the limiting temperature for HQ phase transition from nuclear matter as a gas of
hadrons to plasma of quarks and gluons, corresponding to P≥ 0, reads

Tmin =

√
3

π

(
5
7

)1/4

Λ' 202.7 MeV at µB = 0. (19)

III.2. Quark phase
We use the standard MIT bag model [16] for massless, non-interacting u, d quarks and

gluons for the quark phase. At high density and/ or high temperature we obtain EoS of quark-
gluon plasma, i.e.,

PQGP ' 8π2T 4

45
+N f

(
7π2T 4

60
+

µ2
q
T 2

2
+

µ4
q

4π2

)
−B. (20)

and other quantities,

EQGP ' 8π2T 4

15
+N f

(
7π2T 4

20
+

3µ2
q
T 2

2
+

3µ4
q

4π2

)
+B, (21)

ρQGP '
N f

3

(
µqT 2 +

µ3
q

π2

)
. (22)
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Here, a baryon consists of three quarks, then ρB = ρq/3 and µB = 3µq. In analogy to the black-
body radiation of massless photons, the temperature dependence of the pressure obeys a Stefan-
Boltzmann law. The bag parameter B, measured for the energy density of the vacuum, is used to
represented the properties of the physical vacuum.

It has been found [17] that with a density-independent bag constant B in the MIT bag model
(without color superconductivity), the maximum mass of a neutron star cannot exceed a value of
about 1.6 solar masses. As the value of B decreases, the maximum mass increases, but too small
values of B are incompatible as a HQ transition density ρB > 2−3ρ0 in nearly symmetric nuclear
matter, as demanded by heavy-ion collision.

To overcome these restrictions of the model, a density-dependent bag parameter B(ρB) can
be introduced, as followed by Ref. [18]. This leads to smaller the value of B at high density (and/or
high temperature), while increasing the value of the maximum mass and providing a stiffer QGP
EoS, and still fulfilling the condition of no phase transition below ρB ≈ 2ρ0 in symmetric matter.
Using a gaussian parametrization for the density dependence, we present the result of B based on
the MIT model,

B(ρq) = B
∞
+(B0−B

∞
)e
−β 2

(
ρq
ρ0

)2

, (23)

with β = 0.17.
The limiting temperature for hadron-quark phase transition, corresponding to P≥ 0, reads

Tmin =

√
3
π

(
10
37

)1/4

B1/4
0

at µB = 0. (24)

Comparing this equation to (19), we get

B1/4
0

=

(
37
14

)1/4
Λ√
π
' 287.7 MeV. (25)

The value of B
∞

is fixed at the tricritical point (T ' 171 MeV, µB ' 980 MeV). It gives

B1/4
∞

=
Λ√
π
' 225.7 MeV. (26)

The bag parameters B found here is inside the range from B1/4 = 125 MeV to about 300
MeV. This result is consistent with the value analyzed from hadron spectroscopy of the bag model
[19].

The thermodynamic quantities in the MIT-Bag model such as pressure and energy density
can be calculated as functions of quark chemical potential (or baryon chemical potential) and tem-
perature and the HQ phase transition is inferred via the Gibbs construction of the phase boundary.
In the MIT bag model, the HQ transition is of first order, implying that at constant chemical po-
tential the phase boundary is obtained by the requirement that the pressure of the hadronic phase
is equal to that in the QGP.

III.3. Phase equilibrium
The hadronic EoS (18) is matched to the QGP EoS (20) via Gibbs conditions for (mechan-

ical, chemical and thermal) phase equilibrium [20],

PHD = PQGP , THD = TQGP , µHD = µQGP . (27)
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This leads to a phase boundary curve T ∗(µ∗) in the T − µ plane determined by the equation
PHD(T

∗,µ∗) = PQGP(T
∗,µ∗), shown in Fig. 4. Constructed via (27) the phase transition is of first

order for T > 171 MeV, charactering to a mixed phase of hadron matter and QGP and creating to
a latent heat.

TCP ≃ 171 MeV CP
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Fig. 4. The hadron-quark phase transitions (blue dot-dashed line) of the hot chiral nu-
clear matter to quark-gluon plasma in the (T,µB ) plane. The shadow region is the emer-
gence of hadron-quark mixed phases during the hot chiral phase transition.

It should be realized from Fig. 4 that there exits a region where the HQ phase transition
occurs beyond chiral symmetry restoration in the nuclear phase side, in which the nucleon mass
is zero. This is a phase in which nucleonic (hadronic) elementary excitations exist but in chiral
symmetry just before the HQ phase transition from the nuclear phase to the quark one. This region
which has been proposed recently by McLerran and Pisarski based on large Nc arguments [21]
the so-called quarkyonic matter as a new state of matter characterized by confinement and chiral
symmetry restoration. Thus, the phase beyond the chiral symmetric nuclear phase predicted by
our model may corresponds to the quarkyonic phase.

IV. CONCLUSIONS

The HQ phase transition in the ENJL model included scalar-vector eight-point interaction
at very high density and temperature has been investigated following Ref. [15]. As a first attempt
to understand the HQ phase transition, we consider the hadron side as chiral nuclear matter and
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the quark side as a QGP without quark-pair correlation. Both phases were matched via Gibbs’
phase equilibrium conditions for a first-order phase transition.

There is an interesting region from the phase diagram in Fig. 4 where the HQ phase transi-
tion occurs beyond chiral symmetry restoration in the nuclear matter. This region might appear as
an exotic phase, not the quark phase, but the nuclear phase, where the chiral symmetry is restored.
The so-called quarkyonic phase [21] as a chiral symmetric confined matter may correspond to this
phase.

The color superconducting phase which may exist in finite density systems has been ig-
nored in this paper. So, the next challenging tasks may be to consider the other phases of nuclear
matter, counting nuclear super-fluidity and QGP, and including the color superconducting state,
i.e., quark pairing on the quark phase and nucleon pairing on the nuclear phase. Furthermore, it
is widely believed that at high density and/ or high temperature neutron star matter undergoes a
phase transition to QGP. Therefore, it is also interesting to investigate the phase transition at high
density and/ or temperature between neutron star matter and QGP. This leads to the understanding
and the development of the physics of neutron stars.
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