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Abstract. The gauge model based on SU(3)C⊗SU(3)L⊗U(1)X group with arbitrarily electric
charged exotic leptons is presented. The mass eigenvalues and eigenstates for neutral gauge
bosons are presented in the general form. We show that in the 3-3-1 models, there always exists
triple Higgs self-coupling. The lepton number operator is also presented.
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I. INTRODUCTION

The current status of Particle Physics shows that the Standard Model (SM) must be ex-
tended. Among beyond the Standard Models, the models based on SU(3)C ⊗ SU(3)L⊗U(1)X
(3-3-1) gauge group have some interesting properties due to the following reasons. The first rea-
son concerns the generation number problem. In the SM, there exists the replica of the generations
meaning the number of the latter is not constrained. However, in the 3-3-1 models [1, 2], one of
quark generation behaves differently from the two other, and this fact leads to the consequence
that the number of fermion generations is multiple of the quark color number (3), i.e., 3, 6, ...
Combining with the Quantum Chromodynamics (QCD) asymptotic freedom requiring the quark
generations is less than five, we get the answer why number of fermion generations is equal to
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three. The second reason follows from the above mentioned fact that one of quark generations
behaves differently from the two others, so we can explain why top quark is so heavy. The other
issues such as neutrino and electric charge quantization [3] also get appropriate explanations.

The different kind of the 3-3-1 models is defined by the beta parameter appearing in the
electric charge operator

Q = T3 +βT8 +X . (1)
In Ref. [4], the 3-3-1 models with arbitrary beta has been presented. However, this approach

gives unclear content of the Higgs components. Hence, in this paper, we present the 3-3-1 model
with exotic leptons having arbitrarily electric charges.

II. THE MODEL

In (1), Ti, i = 3,8 stand for the SU(3)L operators. For the fundamental representation triplet

T3 =
λ3

2
=

1
2

diag(1,−1,0), T8 =
λ8

2
=

1
2
√

3
diag(1,1,−2).

The lepton triplet is constituted by

faL = (νa , la ,Eq
a )

T
L ∼ (1,3,(q−1)/3), a = e,µ,τ , (2)

where q is electric charge of associated extra lepton. Other right-handed leptons are the singlets
under SU(3)L

laR ∼ (1,1,−1) , Eq
aR ∼ (1,1,q) .

Applying Eq.(1) to Eq.(2) we obtain

b =−2q+1√
3

, X faL =
q−1

3
. (3)

Then, the electric charge operator, for triplet, has the form

Q =

 1
3(1−q)+X

−1
3(2+q)+X

1
3(1+2q)+X

 . (4)

II.1. Yukawa couplings and fermion masses
For the leptons

faL = (νa , la ,Eq
a )

T
L ∼

(
1,3,

q−1
3

)
,

laR ∼ (1,1,−1) , Eq
aR ∼ (1,1,q) . (5)

The mass of Eq
a is obtained from the Yukawa coupling

−L E
Yukawa = hE

ab faLΦ1Eq
bR +h.c. , (6)

where

Φ1 ∼
(

1,3,−1+2q
3

)
=

 Φ
(−q)
1

Φ
(−q−1)
1
Φ0

1

 . (7)
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Hence, if Φ0
1 has a vacuum expectation value (VEV) ω√

2
, then Eq

a gets mass from a mass matrix

(mE)ab = hE
ab

ω√
2
. (8)

Finally for the ordinary leptons, we have

−L l
Yukawa = hl

ab faLΦ2lbR +h.c. , (9)

where

Φ2 ∼
(

1,3,
2+q

3

)
=

 Φ
(+)
2

Φ0
2

Φ
(q+1)
2

 . (10)

If Φ0
2 has a VEV v√

2
, then the mass matrix related to masses of la is

(ml)ab = hl
ab

v√
2
. (11)

We turn now to the quark sector where

Q3L =

 u3
d3
T


L

∼
(

3,3,
1+q

3

)
,

u3R ∼ (3,1,2/3) , d3R ∼ (3,1,−1/3) ,

TR ∼
(

3,1,
2+3q

3

)
. (12)

The u3 gets mass through the Yukawa part,

−L t
Yukawa = htQ3LΦ3u3R +h.c. , (13)

where

Φ3 ∼
(

1,3,
q−1

3

)
=

 Φ0
3

Φ
−
3

Φ
(q)
3

 . (14)

If Φ0
3 has a VEV u√

2
then the mass term of u3 is

mu3 = ht u√
2
. (15)

The other Yukawa terms relating with Q3L are

−L g3
Yukawa = hbQ3LΦ2d3R +hT Q3LΦ1TR +h.c., (16)

which give two mass terms:

md3 = hb v√
2
,mT = hT ω√

2
. (17)
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Two other quark generations are

QαL =

 dα

−uα

Dα


L

∼
(

3,3∗,−q
3

)
, α = 1,2,

uαR ∼ (3,1,2/3) , dαR ∼ (3,1,−1/3) ,

DαR ∼
(

3,1,−1+3q)
3

)
. (18)

The relevant Yukawa terms are

−L 12
Yukawa = hd2

αβ
QαLΦ

†
3dβR +hu2

αβ
QαLΦ

†
2uβR +hD2

αβ
QαLΦ

†
1DβR +h.c., (19)

from which it follows

(md2)αβ = hd2
αβ

u√
2
, (mu2)αβ =−hu2

αβ

v√
2
, (mD2)αβ = hD2

αβ

ω√
2
. (20)

II.2. Gauge boson masses
Gauge boson masses arise from the covariant kinetic term of Higgs,

LHiggs =
3

∑
i=1

(Dµ〈Φi〉)† Dµ〈Φi〉 . (21)

The covariant derivative is defined as

Dµ = ∂µ − ig
8

∑
a=1

AaµTa− ig′XB′µT9

≡ ∂µ − igPNC
µ − igPCC

µ , (22)

where g,g′ and Aaµ ,B′µ are gauge couplings and fields of the gauge groups SU(3)L and U(1)X ,
respectively. For the triplet, T9 =

1√
6
diag(1,1,1), and the part relating with neutral currents is

PNC
µ =

1
2

diag

(
A3 +

A8√
3
+

√
2
3

XtB′ ,−A3 +
A8√

3
+

√
2
3

XtB′ ,

−2A8√
3
+

√
2
3

XtB′
)

µ

, (23)

where the space-time indices of gauge fields, for compactness are omitted, and t ≡ g′/g. The part
associated with charged currents is

PCC
µ = ∑

a
TaAaµ ; a = 1,2,4,5,6,7

=
1√
2

 0 W+ V−q

W− 0 Y−(1+q)

V q Y (1+q) 0


µ

, (24)
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where we have denoted
√

2W±µ ≡A1µ∓ iA2µ ,
√

2V±q
µ ≡A4µ± iA5µ and

√
2Y±(1+q)

µ ≡A6µ± iA7µ .
The upper subscripts label the electric charges of gauge bosons. Remind that this part does not
depend on the X-charges of triplets.

To summary, with the following Higgs vacuum structure

〈Φ1〉=
(

0 ,0 ,
ω√

2

)T

, 〈Φ2〉=
(

0 ,
v√
2
,0
)T

, 〈Φ3〉 =

(
u√
2
,0 ,0

)T

, (25)

masses of non-Hermitian (charged) gauge bosons are given by

m2
W =

g2(v2 +u2)

4
,m2

V =
g2(u2 +ω2)

4
,m2

Y =
g2(v2 +ω2)

4
. (26)

By spontaneous symmetry breaking (SSB), the following relation should be in order: ω � u,v;
and from (26) ones get a consequence

u2 + v2 = v2
SM = 2462 GeV2. (27)

The diagonalization of the neutral gauge boson sector is more complicated, because all the
three gauge fields generally mix. In the basis

(
A3µ ,A8µ ,B′µ

)
, the respective squared mass matrix

is given by

M2NG
mass =

g2

4

 u2 + v2 1√
3
(u2− v2) 2t

3
√

6
[(q−1)u2− (q+2)v2)

1
3(u

2 + v2 +4ω2) 2t
9
√

2
[(q−1)u2 +(q+2)v2 +2(2q+1)ω2]

2t2

27 [(q−1)2u2 +(q+2)2v2 +(2q+1)2ω2]

 . (28)

First of all, we can always obtain a zero eigenvalue (i.e. photon mass) with the correspond-
ing eigenstate (i.e. photon field) as

Aµ =

√
3t√

18+4(1+q+q2)t2

(
A3µ +bA8µ +

√
6

t
B′µ

)
,

which is independent of the VEVs as a consequence of the electric charge conservation [3].
Next, we can write electromagnetic interactions following the standard form given in [3],

and thus the Weinberg’s angle (θW ) is defined as

sW =

√
3t√

18+4(1+q+q2)t2
,

where note that sW = sinθW , cW = cosθW , and so forth. With this at hand, the photon field is
rewritten in terms of

Aµ = sW A3µ + cW

(
btW A8µ +

√
6tW
t

B′µ

)
.

The SM Z boson is orthogonal to the photon field as usual,

Zµ = cW A3µ − sW

(
btW A8µ +

√
6tW
t

B′µ

)
.



226 HOANG NGOC LONG, DUONG VAN LOI, NGUYEN CHI THAO AND THANH HUU HONG GIANG

The model under consideration contains one new, neutral gauge bosons, called Z′, that are orthog-
onal to the field in the parentheses (as coupled to the weak hypercharge) appearing in the photon
and Z fields, which are obtained by

Z′µ =
1√

6+b2t2

(√
6A8µ −btB′µ

)
,

where note that t = 3
√

2sW√
3−4(1+q+q2)s2

W
.

Next, let us change to the new basis of (Aµ ,Zµ ,Z′µ). Correspondingly, the mass matrix
M2NG

mass is changed to

M′2 =UT M2NG
massU =

(
0 0
0 M′′2

)
,

where (A3µ ,A8µ ,B′µ)
T =U(Aµ ,Zµ ,Z′µ)

T , and

U =


sW cW 0

bt2c2
W

sW (6+b2t2)
− bt2cW

6+b2t2

√
6√

6+b2t2√
6tc2

W
sW (6+b2t2)

−
√

6tcW
6+b2t2 − bt√

6+b2t2

 .

We see that the photon field, Aµ , is decoupled, while the other states (Zµ ,Z′µ) mix by
themselves via a 2×2 mass matrix, M′′2, found to be

M′′2 =
g2

4

 u2+v2

c2
W

u2−v2−2[(1+q)u2+qv2]s2
W

c2
W

√
3−4(1+q+q2)s2

W
u2−v2−2[(1+q)u2+qv2]s2

W

c2
W

√
3−4(1+q+q2)s2

W

u2+v2+4ω2−4s2
W [(1+q)u2−qv2+2ω2−((1+q)2u2+q2v2+ω2)s2

W ]

c2
W [3−4(1+q+q2)s2

W ]

 .

Diagonalizing their mass matrix, we obtain the corresponding physical states

Z1µ = cεZµ − sεZ′µ , Z′1µ = sεZµ + cεZ′µ , (29)

where the Zµ -Z′µ mixing angle (ξ ) is obtained by

t2ξ = tan2ξ =

√
3−4(1+q+q2)s2

W [v2−u2 +2((1+q)u2 +qv2)s2
W ]

u2 + v2−2ω2−2s2
W [v2 +q(qu2 +(2+q)v2)−2ω2 +((1+q)2u2 +q2v2 +ω2)s2

W ]

'

√
3−4(1+q+q2)s2

W [u2− v2−2((1+q)u2 +qv2)s2
W ]

2ω2c4
W

, (30)

and the corresponding masses are

m2
Z1
' g2(u2 + v2)

4c2
W

, m2
Z′1
' 2g2ω2c2

W

3−4(1+q+q2)s2
W
.

Because of the condition u,v� w, the Z1 boson has a small mass in the weak scales (u,v) which
is identical to the standard model Z boson, whereas the Z′1 boson is a new, heavy charged gauge
boson with mass proportional to ω scale. The mixing between these two fields is small since
ξ → 0 due to the above condition.

The spontaneous symmetry breaking follows the pattern

SU(3)L⊗U(1)X
ω−→ SU(2)L⊗U(1)Y

u,v−→U(1)Q .
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Corresponding to each step of the breaking, the neutral gauge boson states will be changed as
follows:

SU(3)L⊗U(1)X
A3,A8,B′−→ SU(2)L⊗U(1)Y

A3,B,Z′−→ U(1)Q : A,Z,Z′ . (31)

Now we return to the Higgs content of the model. It is emphasized that if all fermions
except neutrinos have the right-handed counterparts, then there need just three Higgs triplets. From
the above presentation we explicitly see that: since sum of X-charges over three Higgs triplets
vanishes, so in the Higgs potential, there always exists a triple Higgs self-coupling εi jkΦi

1Φ
j
2Φk

3.
The lepton number operator is constructed from [5]

L = αT3 +βT8 +L . (32)

For the general case, let us assume that the new extra lepton E acquire lepton number l. Applying
Eq.(32) to Eq.(2) we obtain

α = 0 ,β =
2(1− l)√

3
,L faL =

2+ l
3

. (33)

Hence, lepton number for triplet is in the form

L =
2(1− l)√

3
λ8 +L =

 1−l
3 +L

1−l
3 +L

2(l−1)
3 +L

 . (34)

The gauge bosons have the following lepton numbers

L(W ) = 0 , L(V q) = l−1 , L(Y (1+q)) = l−1 .

To finish this section, we notice that the model presented here is not applicable for the
minimal 3-3-1 model [1], where right-handed charged lepton lies in the lepton triplet. Without
right-handed lepton singlet, the scalar sextet has to be introduced to provide masses for all leptons.
In the recent proposed model called the simplest 3-3-1 model [6], the exotic lepton has the electric
charge ±1/2e. In this case the beta value vanishes.

III. CONCLUSION

In this paper, the 3-3-1 model in which exotic leptons has arbitrarily electric charge is
presented. We have showed that the spontaneous symmetry breaking in the model requires just
three Higgs triplets. Using the general method of diagonalization, the eigenvalues and eigenstates
of neutral gauge bosons have been also obtained. We have showed that due to the vanishing of
the sum over three X charges of the Higgs triplets, the Higgs potential always has the triple self-
coupling. The lepton number operator of the 3-3-1 model is also presented. The special case with
q =±2 is interesting and is our future study.
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