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Abstract. We study one-loop quantum gravity corrections to the standard model Higgs potential
V (φ)à la Coleman-Weinberg and examine the stability question of V (φ) in the energy region of
Planck mass scale, µ 'MPl (MPl = 1.22×1019GeV). We calculate the gravity one-loop correc-
tions to V (φ) in Einstein gravity by using the momentum cut-off Λ. We have found that even small
gravity corrections compete with the standard model term of V (φ) and affect the stability argu-
ment of the latter part alone. This is because the latter part is nearly zero in the energy region of
MPl.
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I. INTRODUCTION

It is curious that the mass of the recently discovered Higgs boson MH lies far outside of
the mass bound derived from the one-loop radiative corrections [1, 2]. This bound arises from the
stability condition on the Higgs quartic coupling λ , i.e. λ (µ)> 0.
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The large two-loop corrections come into play and the renormalization group (RG) flows
of λ (µ) change drastically. Some fine-tuning of the parameters, especially that of Mt (= 173.21±
0.51GeV), yields λ (µ) barely in accord with the boundary values of the stability bound extended
to the scales of Planck mass MPl [3–5]. This implies an interesting possibility that the standard
model (SM) may hold all the way up to the Planck scale MPl [6–8]. This suggestion is compatible
with the so far vain results of the SUSY particle search at the LHC experiment and no experimental
hints of GUT.

It is a common belief that quantum gravity effects should manifest themselves near Planck
energy scales. Possible significance of gravity effects has recently been studied in a few different
approaches: gravity loop corrections to the φ 6 and φ 8 terms in V (φ) in [9], the correction to the
Higgs coupling λ in [10], both in Einstein gravity and using the cut-off Λ reguralization. Gravity
effects have also been studied by some use of string theory [11].

In this paper, we consider the graviton one-loop corrections in addition to the SM one- and
two-loop corrections. Of course the gravity one-loop corrections are small, with a coefficient of
the order (1/16π2)(κ2µ2)' 1/10 for µ 'MPl (the factor 1/16π2 is due to the one-loop integral).
However, if the standard model V (φ) becomes nearly zero at Planck scales, as advocated by
many [3–5], there is a chance that small gravity corrections may upset the SM contribution. The
gravity two-loop effects are likely to be smaller than SM one- and two-loops and graviton one-loop
(to show this is an interesting question, but it is beyond this work), and will not be considered. We
are concerned about one-loop gravity effects in some energy range of MPl. It is conceivable that the
one-loop gravity effects is small but noticeable in this energy range while two-loop effects may still
be small there. When we often say near the Planck energy MPl, we mean (0.1 - 0.5)MPl≤ E ≤ (1.2
- 1.5)MPl.

After taking account of the φ 6 and φ 8 terms in V (φ) due to gravity one-loops, the sign of λ

alone is not enough to answer to the stability question of the Higgs potential V (φ) near the Planck
energy scales, φ 'MPl. Hence we have to study the shape of V (φ) in the region of φ 'MPl, and
we have found that V (φ) with the φ 6 and φ 8 terms is stable in this region.

We are aware that computing gravity loop corrections in Einstein gravity (UV non-renor-
malizable theory) is accompanied by some cut-off Λ dependence. We still think it is important
to know whether gravity loop corrections to the Higgs potential may affect the results in the SM
recently obtained at Planck mass scales [9, 10, 12, 13]. On the other hand, we will see whether the
Λ dependence is rather mild so that we can say some thing useful for the study of the SM in this
energy region.

II. GRAVITATIONAL COLEMAN-WEINBERG CORRECTIONS

We will derive the Higgs effective potential in the framework of SM coupled to Einstein’s
gravity theory, the Coleman-Weinberg procedure [14]. We begin by writing the following action,

S =
∫

d4x
√
−g
[
− 2

κ2 R+gµν(∂µH)†(∂νH)−m2H†H−λ (H†H)2 + · · ·
]
, (1)

where κ ≡
√

32πG =
√

32πM−1
Pl , g≡ detgµν , gµν is the metric and H is the Higgs doublet field.

The ellipsis shows the terms of gauge and fermion fields. Expanding the Higgs doublet around the
background field φ as H† = 1/

√
2(σ1− iπ1,φ +σ2− iπ2) and the metric around the Minkowski
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background as gµν = ηµν + κhµν , we evaluate the gravity corrections to the tree level Higgs
potential

Vtree =
m2

2
φ

2 +
λ

4
φ

4. (2)

We take the de Donder gauge fixing term Lgf. It is given in the Minkowski background by

Lgf =−ηαβ

(
η

µe
η

να − 1
2

η
µν

η
eα

)(
η

ρ f
η

σβ − 1
2

η
ρσ

η
f β

)
hµν ,ehρσ , f . (3)

The gravity one-loop corrections to the potential Vtree have been obtained in the momentum
cut-off method [9, 12, 13],

δVloop =
5κ2Λ2

32π2

(
m2

2
φ

2 +
λ

4
φ

4
)

+
9κ4

256π2

(
m2

2
φ

2 +
λ

4
φ

4
)2
{

ln
κ2
(
2m2 +λφ 2

)
φ 2

8Λ2 − 3
2

}

+ ∑
i=±

C2
i

64π2

(
ln

Ci

Λ2 −
3
2

)
+ · · · ,

(4)

where C± is

C± =
1
2

[
m2

C−m2
A ±

√
(m2

C +m2
A)

2−16m4
B

]
, (5)

and

m2
A =

κ2

8
(
2m2

φ
2 +λφ

4) , m2
B =

κ

2
(
m2

φ +λφ
3) , m2

C = m2 +3λφ
2. (6)

In Eq. (4), the first and the second terms are due to the graviton one-loops, the third term due
to graviton and Higgs one-loops. The ellipsis stands for the terms including the one- and two-
loops of SM particles. Note that the factors κ2 and κ4 suppress the terms at small scales of
φ (φ � MPl). Gravity corrections give rise to logarithmically divergent terms of φ 6 and φ 8 in
addition to the Λ2 and lnΛ divergences in the φ 2 and φ 4 terms. The terms proportional to φ 6 and
φ 8 are suppressed at usual energies, but they may become significant near MPl. The quadratic
and logarithmic divergences in the φ 2 and φ 4 terms can be renormalized. The effective potential
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Veff(φ) we will obtain below and will be used in this paper is the following

Veff(φ) =
m2(µ)

2
φ

2 +
λ (µ)

4
φ

4

+
3

64π2

(
m2(µ)+λ (µ)φ 2)2

(
ln

m2(µ)+λ (µ)φ 2

µ2 − 3
2

)
+

9κ4

256π2

(
m2(µ)

2
φ

2 +
λ (µ)

4
φ

4
)2
{

ln
κ2
(
2m2(µ)+λ (µ)φ 2

)
φ 2

8Λ2 − 3
2

}

+ ∑
i=±

C2
i (µ)

64π2

(
ln

Ci(µ)

Λ2 −
3
2

)
− κ2

32π2

(
m4(µ)φ 2 +2λ (µ)m2(µ)φ 4) ln

(
Λ2

µ2

)
+

5κ4

512π2 m4(µ)φ 4 ln
(

Λ2

µ2

)
,

(7)

where m(µ) and λ (µ) and Ci(µ) are renormalized parameters. Solving the renormalization group
equation including gravity 1-loop and SM 2-loop, we have evaluated the value of these renor-
malized parameters. (see Eq. (10), Ref. [3] and Fig. 3). Using these renormalized parameters,
we can get the Veff(φ) including the SM one- and two-loop corrections and the gravity one-loop
corrections.

Fig. 1. Graviton one-loop graphs for the Higgs two- and four-point functions.

The Veff(φ) given by Eq. (7) (here after denoted by V (φ)) receives i) the contribution from
1- and 2-loop corrections from the SM, Vi(φ), and ii) the contribution from the gravity 1-loop
corrections, Vii(φ). The term i) without gravity effects has been studied in the past [3, 5]. A part
of the term ii) has also been computed in [9]. In addition the gravity 1-loop affects the coupling
constants appearing in the Vi, particularly m2 and λ . In our study the RG evaluation of these
coupling constants should also take account of the gravity 1-loop corrections to the β -functions.
This will be done by considering the 1-loop graphs of Fig. 2, and it yields the β -functions of
Eq. (8).

Admittedly there are a few insufficient aspects in our study of the loop corrected potential
V (φ). Firstly, we combine three different ways of evaluating V (φ), the SM 2-loop corrections
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Fig. 2. Gravitaton one-loop graphs for gauge couplings (a), Yukawa coupling (b.1∼ b.2),
anomalous dimension of Higgs (c.1) and anomalous dimension of fermion (c.2∼ c.3).

of [3,5], the gravity 1-loop effects of [9] and our work. 1 Secondly, the initial values of the coupling
constants (9) are taken from the past analysis [5]. It would be more appropriate to re-tune the
initial values after incorporating the gravity loop effects. Thirdly, without knowing the solid way
to handle the UV non-renormalizable gravity loop corrections, we have taken a halfway means.
δVloop of Eq. (4) consists of two parts, renormalizable φ 2 and φ 4 terms and non-renormalizable
φ 6, φ 8 and non-polynomial terms. The cutoff Λ dependence is left in the second part as given in
Eq. (7). We have replaced the parameters m and λ in non-renormalized terms with renormalized
parameters m(µ) and λ (µ). Different approaches are taken for the non-renormalizable part in [9].
Even with these few unsatisfactory aspects of our calculation, we think our study of the Higgs
potential gives a useful clue to the role of gravity corrections at Planck mass scales.

Obtaining the full effective potential (7) amounts to finding the parameters m(µ), λ (µ)
and Ci(µ) taking account of the SM two-loop corrections and gravity one-loop corrections. This
can be made by using the β -functions to these orders. We will use the β -functions in the SM to
the two-loop order by [3, 15–17]. A part of graviton loop corrections (shown in Fig. 1) has been
computed [9, 10, 13].

We have further calculated gravity corrections to other coupling constants, i.e., the gauge
and Yukawa couplings from graviton one-loop graphs of Fig. 2.

We have obtained the β -functions and the anomalous dimensions due to the gravity one-
loop corrections from the UV divergent terms of Eq. (4) and these graphs. The result is

βm2 =
5κ2m2

16π2 µ
2− κ2m4

8π2 , βλ =
5κ2λ

16π2 µ
2− κ2λm2

2π2 − 5κ4m4

64π2 ,

βgi =
5κ2

16π2 giµ
2, βyt =

κ2

2π2 ytµ
2, γφ =−κ2m2

32π2 , γt =
27κ2

512π2 µ
2.

(8)

1The computation in [3, 5] is made using the dimensional regularization method, whereas we use the cut-off
method. Combining the results of two different regularization methods is not totally consistent. However, the gravity
1-loop terms should not differ significantly depending on whether we use the cut-off or dimensional method, and hence
we think that our result should be reliable. Combining two different regularization methods is often used, e.g. in lattice
and perturbative regularizations in QCD.
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III. HIGGS QUARTIC COUPLING AND POTENTIAL AFTER INCLUDING GRAVITY
CORRECTIONS

The energy flows of the Higgs quartic coupling λ (µ) and the effective potential V (φ) can
be obtained by using the RG equations with the SM matter two-loop β -functions [3] and those due
to the gravity loop corrections given in Eq. (8). We employ the threshold values of the following
quantities given by Degrassi et al. [5],

gY(Mt) = 0.45187, g2(Mt) = 0.65354,

g3(Mt) = 1.1645−0.00046
(

Mt−173.15
GeV

)
,

yt(Mt) = 0.93587+0.00557
(

Mt−173.15
GeV

)
−0.00003

(
MH−125

GeV

)
,

λ (Mt) = 0.12577+0.00205
(

MH−125
GeV

)
−0.00004

(
Mt−173.15

GeV

)
,

(9)

where gY, g2, g3 are the U(1), SU(2), SU(3) gauge couplings respectively, yt is the Yukawa
coupling of top quark. We adjust the value of m2(Mt) so that V (φ) gives the correct vacuum
expectation value, v = 246 GeV at µ = O(100 GeV).

We investigate the following properties of λ and V (φ).

i) µ-dependence of λ (µ),
ii) The shape of V (φ) near φ 'MPl,

iii) Λ dependence of V (φ) near φ 'MPl.

In the case without gravity corrections, the RG flow of λ (µ) is already known [3]. The
gravity one-loop corrections to λ (µ) and V (φ) is tiny at scales µ �MPl, the RG flows of λ (µ)
and V (φ) virtually coincide with those of the SM only [3] below the Planck energy scale.

i) µ-dependence of λ (µ)

We evaluate the running coupling λ (µ) by using the following equation,

µ
∂λ

∂ µ
=

5κ2λ

16π2 µ
2− κ2λm2

2π2 − 5κ4m4

64π2

+
1

16π2

(
24λ

2−3g2
Yλ −9g2

2λ +
3
8

g4
Y +

3
4

g2
Yg2

2 +
9
8

g4
2 +12λy2

t −6y4
t

)
+

1

(16π2)2

[
−312λ

3 +36λ
2 (g2

Y +3g2
2
)
−λ

(
629
24

g4
Y−

39
4

g2
Yg2

2 +
73
8

g2
4

)
+

305
16

g6
2−

289
48

g2
Yg4

2−
559
48

g4
Yg2

2−
379
48

g6
Y−32g2

3y4
t −

8
3

g2
Yy4

t −
9
4

g4
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Yy2
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4
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Y +
21
2
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)
−144λ

2y2
t −3λy4

t +30y6
t

]
.

(10)
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See Ref. [3] for the details of the parts of SM. Gravity corrections are noticeable around µ =
O(1018GeV), with a rapid increase in λ (µ), as seen from Fig. 3. This behavior stops at µ =
(0.9∼ 1.0)×MPl, and λ (µ) starts to decrease sharply. It becomes negative at µ 'MPl (Fig. 3).

(a)

(b)

Fig. 3. (a) Energy dependence of λ (µ) for different values of Mt, Mt =
174 GeV (dashed), 173 GeV (solid), 172 GeV (dotted). (b) The magnification of the
Planck energy region.



236 Y. ABE, M. HORIKOSHI AND T. INAMI

ii) The shape of V (φ) near φ 'MPl

V (φ) near φ = MPl is shown in Fig. 4 (for different values Mt). We have set the condition
µ = φ to see how the potential V (φ) changes as φ varies together with µ . Gravitational effects
begin to be noticeable at φ = O(1018GeV), where φ 6 and φ 8 terms become important. In the
region of φ < 0.8MPl, V (φ) is positive. In the region of φ = (0.8 ∼ 0.9)×MPl, V (φ) begins to
be negative. At φ = 1.1MPl, it takes a minimum. In the region of φ & 1.1MPl, V (φ) is rapidly
increasing. However, at such large values of φ , higher loop effects may be important, and one
cannot say anything reliable about the height (and the shape) of V (φ).

Fig. 4. V (φ) near φ ∼ MPl for different values of Mt, Mt = 174 GeV (dashed),
173GeV (solid), 172 GeV (dotted).

From i) and ii), we note that the graviton loop effects are essential to determine the stabi-
lization of V (φ) in the Planck energy region. We have already noted in Fig. 3 that λ (µ) becomes
negative at µ 'MPl. In the SM, λ (µ) < 0 makes the V (φ) unstable. However, Fig. 4 shows that
the potential is stable thanks to φ 6 and φ 8 terms due to the graviton loop corrections. Hence, the
study of the potential stabilization requires the evaluation of the graviton loop effects as the energy
approaches Planck mass scale.

We have so far taken a single fixed value of the cut-off, Λ = 1MPl (in Fig. 3 and Fig. 4).
We know that quantum corrections in the non-renormalizable Einstein gravity is cut-off dependent
and at best has only a limited meaning. It is still useful to know whether gravity corrections are
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negligibly small or as large as the SM corrections for the cut-off values in question in this study,
1MPl < Λ < 3MPl.

Fig. 5. V (φ) near φ ∼MPl for different values of Λ, Λ = 3MPl (dotted), 2MPl (dashed),
1MPl (solid).

iii) Λ dependence of V (φ) near φ 'MPl

In the region of φ & MPl, φ 6 and φ 8 terms are significant but they depend on the cut-off
value Λ, as shown in Fig. 5. V (φ) takes the minimum near MPl, even if we change Λ. Hence, in
the graviton one-loop level, V (φ) has a minimum independent of the value of Λ. The depth of the
minimum depends strongly (at φ = φmin) on Λ, but the dependence of φmin on Λ is rather mild.
Hence, V (φ) takes the minimum at φ < Λ and φmin stays near MPl (φmin is somewhat larger in the
case of Λ = 1MPl, though).

Finally, we have evaluated V (φ) by setting µ 6= φ . In Fig. 6, we have compared V (φ ,µ = φ)
and V (φ ,µ ∼ MPl). The renormalized parameters (m(µ),λ (µ), ...) have µ dependence but the
value of φ does not. Presently we are not very sure how we may make our analysis more precise,
but we have compared V (φ ,µ = φ) and V (φ ,µ ∼ MPl) to get some measure of the stability of
the potential in the Planck energy region. This result supports our suggestion that the study of the
potential stabilization requires not only the SM loop effects but also the evaluation of the graviton
loop effects.
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(a)

(b)

Fig. 6. V (φ ,µ) near φ ∼MPl for different values of the energy scale µ . (a) µ = 0.5MPl
(solid), µ = 0.6MPl (dotted), µ = 0.7MPl (medium dashed) and µ = 0.8MPl (long dashed).
(b) µ = 0.8MPl (solid), µ = 0.85MPl (dotted), µ = 0.9MPl (small dashed), µ = 0.95MPl
(medium dashed) and µ = MPl (long dashed).
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IV. DISCUSSIONS

In conclusion, evaluating the quantum gravity one-loop corrections to V (φ) near φ 'MPl in
the SM coupled to Einstein’s gravity theory with the momentum cut-off method, we have found a
significant difference between V (φ) with both matter and gravity loop corrections and that without
gravity corrections. The results imply that the graviton loop effects are essential to know the
stabilization of V (φ) near the Planck energy scales.

In the previous work [11], it is suggested that the smallness of both λ and its β -function
is consistent with the Higgs potential being flat around the string scale. Our result agrees with
this suggestion. Actually, the gravity one-loop corrections are not significant in the region of
φ � MPl. However, in the region of φ & MPl, the shape of V (φ) changes drastically by gravity
loop corrections. V (φ) with gravity corrections possesses a minimum at φ = φmin somewhere
φ ∼ MPl, while V (φ) without gravity corrections increases monotonically as φ increases. The
height of the potential minimum depends on Λ strongly, whereas the location of φmin depends
only weakly on Λ. The potential minimum exists regardless of the value Λ. In the graviton one-
loop level, if the sign of λ is negative, the Higgs potential after including gravity corrections
possesses the minimum somewhere near φ ' MPl thanks to φ 6 and φ 8 terms. A study of the
Higgs vacuum metastability including φ 6 and φ 8 terms has recently been made without referring
to gravity loop corrections [18]. Because the Einstein gravity is non-renormalizable, there may
be different approaches for dealing with the UV divergent quantum corrections. For instance,
Loebbert and Plefka introduce counter terms for the terms of φ 6 and φ 8 [9].

It has been proposed that the standard Higgs potential with the additional ξ Rφ 2 term may
play a role of cosmological inflation [11, 19]. It is an interesting work to study the gravity loop
corrections to Higgs field in this context [20].

We should further study UV renormalizable modified gravity theories without Λ depen-
dence. Indeed, it has been proposed that R2 gravity theory is UV renormalizable [21, 22]. A
different approach has been taken in an early work [12]. In a future work, we will consider R2

gravity as a modest step and evaluate the gravitational Coleman-Weinberg corrections to V (φ) in
a UV renormalizable gravity.
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