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dimensional gravitational equation leads to bi-geodesic description in an extended time-space
symmetry which fits Hubble expansion in a ”microscopic” cosmological model. As a duality,
the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of
free massive elementary particles. The 4D-embedded dual solutions of the higher dimensional
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I. INTRODUCTION

Following 5D Kaluza-Klein geometrical dynamical theory with extradimension (ED) [1,2],
there are two main 5D-approaches with time-like non-compact ED: membrane models in Anti-de-
Sitter geometry (AdS), such as [3, 4] and induced matter models [5, 6]. In particular, Malda-
cena [3] found a duality between AdS and conformal fields as AdS/CFT formalism. Randall and
Sundrum [4] applied an infinite AdS 5D-model for a hierarchy solution. For the induced mat-
ter approach, Wesson [5] has proposed a space-time-matter theory (5D-STM) which developed
Kaluza-Klein (K-K) theory with a non-compact ED. The latter should reveal in macroscopic scale
not as conventional space-time, but in a specific term, in particular, as the proper mass of an el-
ementary particle. While 10D-supersymmetry and 11D-supergravity models are hardly to have
monovalent solutions to contact with 4D-physics, the 5D-STM theory intends not only to unify
4D-gravitation and electromagnetism, but also to serve for interpretation of quantum mechanics.
Concerning the membrane models their capability to interpret the aspects of quantum physics
remains to be clarified.

Following the induced-matter approach our preliminary study [7] was based on the time-
space symmetry in which the Klein-Fock reduction formalism was used [2,8] and the two time-like
extra-dimensions were made explicit in terms of the quantum wave function ψ and the proper time
variable t0. For a next step [9], a duality was found between the quantum wave equations in 4D
space-time and a relativistic geodesic description of the curved higher dimensional time-space
and, as a result, Heisenberg indeterminism is shown to originate from the space-time curvatures.
Concerning the experimental verification, applying 3D-extended time-like curvatures can solve
quantitatively the problem of mass hierarchy of charge lepton generations [10] which opens a
new possibility for extending to a more general solution of the heavy lepton-neutrino hierarchy.
It would be an advantage of our cylindrical dynamical model at variance with more general ap-
proaches of other induced matter models. In a recent study [11] by one of the authors the 6D-
extended general relativity equation leads to the desirable geodesic equation and its duality with
a wave-like solution is able to shed light on physical reality of quantum substances in a more
quantitative interpretation than one of the 5D-STM theory. The goal of this study is to introduce
those two options of the induced-matter approach and to compare the consequences of the time-
space symmetrical model with achievements of the 5D-STM theory in interpretation of quantum
mechanics.

The plan of this article is as follows: Except Introduction and Conclusion, there is in Section
2 the Wesson 5D space-time-matter theory is introduced with an emphasis on its application for
quantum mechanical interpretation; in Section 3 there is presented bi-cylindrical geometry based
on 6D time-space symmetry being applicable for our 6D model; in Section 4 there is shown
derivation of dual solutions from 6D time-space gravitational equation; and finally, in Section 5
the quantum mechanical consequences of the 6D time-space model are conducted and compared
with ones of the 5D-STM theory.

II. SPACE-TIME-MATTER THEORY FOR QUANTUM INTERPRETATION

From the first formulation by Wesson [5] the space-time-matter theory (5D-STM) was pro-
posed later to have a canonical metric form [6] consisting of a separable 4D space-time and an ED
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axis l, then its corresponding quadratic 5D-geometry reads:

dS2 = gABdxAdxB = [l2/L2]ds2 + εΦ
2(xγ , l)dl2, (1)

where A,B = 0÷ 4; ds2 = gαβ (xγ , l)dxαdxβ is 4D space-time sub-geometry; L is a length scale
parameter; ε =±1 determining that ED is a space-like (ε =−1) or time-like (ε =+1) and Φ(xγ , l)
is a new scalar field, then g44 = εΦ2. More general, it is possible to replace ED by a shift l →
(l− l0) for a constant distance l0. As a modern version of 5D relativity the introduction of the
fifth independent dimension has dropped the cylindrical condition of the traditional K-K theory
which STM co-workers consider may be daunting algebraically, but this would gain in being richer
physically. In 5D-STM theory there was proposed a null geodesic model with dS2 = 0 of extended
general relativity in 5D manifolds [6] which is to start from a 5D-Ricci vacuum gravitational
equation:

RAB = 0, (2)

where RAB is Ricci tensor. Applying Campbell theory [12] to derive the 4D-solutions leads to 4D-
Einstein gravitational equation and 4D-Maxwell equations of electro-magnetism as it was done
in the classical K-K theory. Moreover, new sub-solutions are found additionally in terms of the
scalar field Φ. Indeed, from (2) the following solutions are derived:

i) 4D-Gravitational equation:

Gαβ =
k2Φ2

2
Tαβ −

1
Φ

(
∇α∇β Φ−gαβ ∆Φ

)
, (3)

where k =
√

16πG/c4 with the gravitational constant G; Tαβ is energy-momentum
tensor; Gαβ is Einstein tensor and ∆ = gαβ ∇α∇β is the wave operator.

ii) Electro-magnetic equations:

∇
αFαβ =−3

∇αΦ

Φ
Fαβ , (4)

where Fαβ is Faraday tensor.
iii) Scalar field equation:

∆Φ =−k2Φ3

4
Fαβ Fαβ . (5)

The scalar field Φ would have wide applicability. For example, suggesting Φ slowly evolv-
ing with time, from (3) a cosmological pseudo-constant is determined; from (5) there are some
Klein-Gordon-like equations formulated. In the simplest case, when g44 = −Φ2 = −1, it leads
solutions (3) and (4) to 4D-gravitational and Maxwell equations, respectively, exacting ones of
the classical K-K theory. Therefore, the 5D-STM theory is a generalization of the traditional 5D
K-K theory.

The modern 5D K-K theory considered that the cylindrical curvature is a too strong con-
straint. Instead of this, 5D-STM can get more physical consequences due to non-compactification
of ED and more flexible choice of time-space curvature than in the classical K-K theory. In
a link with 4D space-time physics of elementary particles the 5D-STM theory would lead to a
qualitative interpretation of important issues of quantum mechanics, such as Heisenberg indeter-
minism [13, 14]. For example, it was shown that the indeterministic inequality should contain a



212 THE MODERN INDUCED MATTER APPROACH OF GENERAL RELATIVITY FOR QUANTUM MECHANICS

dependence on the fifth dimension, instead of being constrained only by Planck constant:

|d pαdxα |= n
h̄
c

(
dl
l

)2

. (6)

In 4D space-time when ED is quantized as l = n.lmin then |d pαdxα | = h̄
c

dn2

n which resembles
Heisenberg inequality. Therefore, the indeterminism in 4D space-time would be governed by a
deterministic variation of the fifth dimension in 5D manifold.

There are also a derivation of Klein-Gordon equation from the wave solution of
4D-gravitational equation [15] and the meaning of quantization [16]. An interpretation of wave-
particle duality and a wave-like origin of proper mass can be found in [17]. In particular, in [15]
Klein-Gordon equation was derived directly from the 5D geodesic equation, which contains an
extra-term with constant extra-length L. On replacing latter with 1

m as the divert mass of particle,
this leads to:

4ψ = m2
ψ. (7)

In fact, there would be a question on the signature of the proper mass m which will be discussed
later.

Rich achievements of 5D-STM theory show an encouraging approach to the long-standing
problem of consistency between general relativity and quantum mechanics. However, for a deci-
sive solution it needs to search for more quantitative description and interpretation.

III. TIME-SPACE SYMMETRY BASED CYLINDRICAL GEOMETRY

At variance with 5D-STM theory, we consider in details the time-space symmetrical model
that increases the higher dimensions up to 6D, which would be simplified alternatively by keep-
ing the traditional cylindrical conditions of the EDs. Such a model is preferably applicable for
elementary particles, i.e. for quantum substances in scales of microscopic space-time. Namely,
in [11] a flat {3T,3X}≡{t1, t2, t3 | x1,x2,x3} symmetrical time-space is introduced:

dS2 = dt2
k −dx2

l , (8)

where k, l = 1÷ 3 are summation indices. Here mostly natural units are used throughout except
when it needs involving quantum dimension. Similar to the STM theory, the physics of 6D-
geometry is investigated on the 6D-”lightcone” of time-space (8) when dS= 0, meaning the higher
dimensional vacuum:

dt2
k = dx2

l . (9)
In applying the 6D time-space symmetrical geometry to describe elementary particles, we

consider those microscopic time-space fluctuations. The simplest applicable geometry including
curved rotation and linear translation is a {3T,3X}-symmetrical bi-cylindrical geometry. In par-
ticular, for an individual fermion elementary particle, e.g. a free lepton with its pseudo-spin ~τ
and/or spin~s being fixed on an arbitrary axis relative to the longitudinal translational axes of {tk}
and {xl}, respectively, then the 3D-spherical rotation is reduced to the 2D-cylindrical spinning.
This dynamical model leads to a general time-space symmetrical bi-cylindrical geometry:

dΣ
2 = (ds2

0 +ds2
ev +ds2

long)− (dσ
2
ev +dσ

2
long +dσ

2
L) = dt2−dλ

2, (10)

where:
dt2 = dψ(t0, tk)2 +ψ(t0, tk)2dϕ(t0, tk)2 +dt2

k
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and
dλ

2 = dψ(xn,xl)
2 +ψ(xn,xl)

2dϕ(xn,xl)
2 +dx2

l .

A contribution from longitudinal fluctuations is expressed through the additional intervals
dslong and dσlong which should be somehow neutralized for conservation of Lorentz invariance.
Here the symmetrical curved time-space {3T,3X}≡{ψ(t0, tk),ϕ(t0, tk), tk |ψ(xn,xl),ϕ(xn,xl),xl}.
In a semi-phenomenological consideration, the T-odd term ds0 is equivalent to a conventional
interval of special relativity in 4D-Minkowski space-time, while the P-odd term dσL is a P-
nonconserving contribution (PNC) of the weak interaction making a global space-like curvature in
term of the left-handed helicity of fermion elementary particles. The P-even term dσev describes
3D-spatial rotational kinetics around x3 being selected as the cylindrical axis and implying that
x3 ∈ {xl}. The time-like even-term dsev ≡ dσCPV is introduced to describe CP-violation effects in
3D-time when a past-future variation would be in account. Being embedded in Manifold (9) the
cylindrical variables ψ and ϕ are getting functions of linear coordinates {tk,xl} and two 3D-local
affine parameters t0 and xn which are introduced in according to the longitudinal projection of
pseudo-spin~τ and spin~s, respectively, namely:

ψ = ψ(t0, tk,xn,xl) = ψ(t0, tk)×ψ(xn,xl); ϕ = Ω0t0+Ωktk−knxn−klxl = Ωiti−k jx j, (11)

where {i, j} are summation indices of curved coordinates. In (11) a time-space variable separation
is applied for the simplest description of free elementary particles. When (pseudo-)spins~τ and/or
~s are fixed along the longitudinal translational axes, the bi-cylindrical geometry is getting simpler
without longitudinal components of fluctuation. For an explicit description, {t3,x3} are accepted in
Geometry (10) as longitudinal central axes of the bi-cylinder, the curved coordinates of 3D-space
are {x j} ∈ {x1,x2,z} with k2dz2 = k2

ndx2
n +k2

3dx2
3. Similarly, for 3D-time there are {ti} ∈ {t1, t2, t}

where the longitudinal axis t3 can combine with the rotational affine parameter t0 to form the real
physical time t by an orthogonal relationship: Ω2dt2 = Ω2

0dt2
0 +Ω2

3dt2
3 .

Furthermore, in the following scenario we make an assumption that due to interaction of
a Higgs-like potential the time-space symmetry is spontaneously broken, leading to formation of
energy-momentum, which turns the spherical curvature into an almost exact intrinsic cylindrical
curvature, when an ”internal observer” can not see any external 3D-subspaces except the involving
him curved evolutional axes {t,z}. In the result, Geometry (10) turns to a more realistic asymmet-
rical bi-cylindrical geometry:

dΣ
2 = (ds2

0 +ds2
ev)− (dσ

2
ev +dσ

2
L) = dt2−dz2, (12)

where
dt2 = dψ(t0)2 +ψ(t0)2dϕ(t0)2 +dt2

3

and
dz2 = dψ(xn)

2 +ψ(xn)
2dϕ(xn)

2 +dx2
3.

The asymmetrical curved time-space {3T,3X} ≡ {ψ(t0),ϕ(t0), t3 | ψ(xn),ϕ(xn),x3}. The
time-like and space-like intervals in Geometry (12) separate into even and odd constituents, which
means the corresponding cylindrical accelerations can flip for and back (as an even-term) or can
not flip (as an odd-term) in relation to the cylindrical axis. Odd-terms are determined by internal
curvatures, while even-terms relate to external curvatures of cylinders embedded in corresponding
flat 3D-subspaces. Naturally, an internal observer involved in a spiral rotation, being not able to
distinguish this cylindrical curvature, considers its space-time flat. In principle, a free electron
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reserves its angular momentum (spin) correlating with fixed dσev, but in an external laboratory
frame because the proper angular momentum is no more observable unless using an appropriate
on-line polarization analysis, then dσev is getting hidden by a geodesic compensation. In the
result, all three linear spatial axes {xl} reveals in transformation from the cylindrical frame to 3D-
space laboratory frame. In 4D-Minkowski space-time the P-odd term is too small as dσL� dσev,
that makes the weakly curved {x j} ≈ {xl} which open as it is observable in a flat 3D-space.
The time-like even-term dsev ≡ dσCPV is introduced to describe CP-violation effects in 3D-time.
Therefore, an asymmetry of Geometry (12) means that in 4D-Minkowski subluminal space-time
dσCPV � dσL� dσev� ds0, that dσCPV and dσL may be ignored. It makes Geometry (12) turned
to 4D space-time geometry as:

dΣ
2 ≈ ds2

0−dσ
2
ev = dt2−dψ(xn)

2 +ψ(xn)
2dϕ(xn)

2 +dx2
3, (13)

where despite dt2 = dψ(t0)2 +ψ(t0)2dϕ(t0)2 +dt2
3 , this curved axis should be observed as linear

time for 4D space-time observers. In the result, the 3D-time internal curvature is getting absolute
and the subluminal physics is involved in evolution along the physical time t, in the meantime,
dσev turns to a pseudo-cylindrical interval in an almost linear 3D-space {x j} with a weakly curved
residue along axis z. The curvatures are described by EDs ψ and ϕ in (11). When there is not
a polarizer for observation in 3D-space (when the 4D-observer gets off from an internal observa-
tion back to 3D-space), the spatial spinning is compensated by the space-like pseudo-cylindrical
curvature that the 3D-space in (13) is getting absolutely flat, such as:

dΣ
2 ≈ ds2

0 = dt2− [dx2
1 +dx2

2]−dx2
3 ≡ dt2−dx2

l , (14)
where [dx2

1 + dx2
2] is added to explicit that x3 ∈ {xl} in the original flat 3D-space. The 4D-

subluminal geometries (13) and (14) fit the charged lepton sector [10].

IV. A DUAL WAVE-LIKE SOLUTION OF GRAVITATIONAL EQUATION

Suggesting that in both orthonormal subspaces of 3D-time and 3D-space cylindrical curva-
ture is realized. In principle, a perfect analogical formula with 4D-Einstein equation is applicable
to the higher-dimensional general relativity with a modification of gravitational constant (see, for
example [18]). Therefore, the gravitational equation in {3T,3X}-vacuum of Geometry (10) reads:

Rm
i −

1
2

δ
m
i R = 0, (15)

where Rm
i and R are Ricci tensors and the scalar curvature, respectively. Hereafter, for the bi-

cylindrical geometry the signatures {−−−+++} are used following a tradition of general rela-
tivity in 4D space-time.

In according to (11), as ψ = ψ(y) and ϕ = ϕ(y) are not independent variables, we assume
that the Hubble law of the cosmological expansion is applicable for the bi-cylindrical model of
microscopic space-time: ∂ψ

∂y = vy = Hyψ , where vy is expansion rate being proportional to the
”microscopic scale factor” ψ , while Hy is the ”microscopic Hubble constant”. The symbolical
bi-variable y≡ {yi,y j} is applied for a shorten description of real curved time-space variables. In
a time-space separated form the notations of coordinates yi or y j are time-like or space-like, corre-
sponding to the notations for symmetrical curved time-space: {3T,3X} ≡ {ψ(t0, tk),ϕ(t0, tk), tk |
ψ(xn,xl),ϕ(xn,xl),xl}. Indeed, y are bi-variables, because they serve to present time-space pairs
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of similar functions of corresponding time-like and space-like variables in our model. Therefore,
for partial differentiation, it is expressed:[

∂y
∂ψ

]
=

1
Hyψ

. (16)

Equation (15) with the principle of conservation of linear translation (CLT) and Lorentz-like con-
dition has a symmetrical exponential geodesic solution [11] in according to Geometry (10) as
following:

− ∂ 2ψ

∂ t2 +
∂ 2ψ

∂x2
j
=−

[(
∂ϕ

∂ t0

)2

−
(

∂ϕ

∂xn

)2
]

ψ, (17)

where as differentials dt3 and dt0, as well as corresponding covariant derivatives are locally orthog-
onal to each other, their second derivatives are combined together as: ∂ 2ψ

∂ t2 = ∂ 2ψ

∂ t02 +
∂ 2ψ

∂ t32 ; similarly,
due to a local orthogonality, for differentials dxl and dxn, the second derivatives in 3D-space are
also combined: ∂ 2ψ

∂x j2 =
∂ 2ψ

∂xn2 +
∂ 2ψ

∂xl
2 .

In principle, variables {y} can turn as well as {y}↔ {iy} in a mathematical transformation,
then Condition (16) turns to: [

∂y
∂ψ

]
=
−i

Hyψ
. (18)

In the result, Equation (17) leads to another representation of a wave-like solution with ψ(y→
iy)∼ eiϕ = ei(Ωt−k jx j) as following:

− ∂ 2ψ

∂ t2 +
∂ 2ψ

∂x2
j
=

[(
∂ϕ

∂ t0

)2

−
(

∂ϕ

∂xn

)2
]

ψ. (19)

If time-space symmetry is absolute, the right side is vanished and Equation (19) turns to:

− ∂ 2ψ

∂ t2 +
∂ 2ψ

∂x2
j
= 0. (20)

Being involved in metrics gϕϕ the functional parameter ψ characterizes time-space curvatures.
Then Equation (20) would describe a specific kind of microscopic gravitational waves transmitting
with the speed of light. However, the time-space symmetry can never be absolute: we have already
assumed that the acceleration term in 3D-time is dominantly enhanced due to interaction with a
Higgs-like potential, that will produce a time-space asymmetrical polarization P→ P+.

Qualitatively, the original {3T,3X} time-space symmetry is broken spontaneously:

(VT P)2 =

[
VT

(
∂ϕ

∂ t−0
+

∂ϕ

∂ t+0

)]2

ψ ≡ [ fe(χ +φ0)]
2
ψ ⇒ (P+)2 =

(
∂ϕ

∂ t+0

)2

ψ ≡ ( feφ0)
2
ψ = m2

0ψ,

(21)
where χ is Higgs field and φ0 is Higgs vacuum; fe is Higgs-lepton coupling constant. The arrow
means the moment of fixing polarization, equivalent to a spontaneous breaking of symmetry. Since
that the elementary particle as a material point has been involved in an almost absolute time-like
cylindrical evolution along the real time t. Any human observation along the same local geodesic
in 3D-time can not distinguish any spiral evolution because the internal curvature of a cylinder
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is zero. This is the reason explaining why the physical time axis of a freely moving elementary
particle is linear in 4D-Minkowski space-time.

After spontaneous breaking of time-space symmetry, Equation (17) determines an asym-
metrical bi-geodesic equation with exponential solutions in according to Geometry (12):

∂ 2ψ

∂ t2 −
∂ 2ψ

∂x j
2 =

[
ΛT −

(
∂ϕ

∂xn

)2

even
−ΛL

]
ψ. (22)

where ΛL≡
(

∂ϕ

∂xL
n

)2
is a small space-like P-odd ”cosmological constant” caused by the global weak

interaction leading to the left-handed space. Being originated from Einstein gravitational equation
(15), Equation (22) describes the microscopic cosmological evolution of time-space curvatures
by its de Sitter-like exponential solutions ψ = ψ0e±ϕ = ψ0e±(Ωt+k jx j).

Correspondingly, the wave-like equation (19) with ψw(y)≡ψ(iy)=ψ0e±iϕ =ψ0e∓i(Ωt−k jx j)

due to breaking symmetry leads to:

− ∂ 2ψ

∂ t2 +
∂ 2ψ

∂x j
2 =

[(
∂ϕ

∂ t+0

)2

−Be(kn.µe)
2
even−

(
∂ϕ

∂xL
n

)2
]

ψ. (23)

where Be is a calibration factor and µe is magnetic dipole moment of charged lepton; its orientation
is in correlation with spin vector~s and being P-even.

V. WHAT IS NEW FOR INTERPRETATION OF QUANTUM MECHANICS?

In mathematical transformation from the exponential solution to the wave-like one, we
should change the signature in Equation (22), keeping the wave equation (23) mathematically
equivalent to the former. This is realized by transformation of variables: t→−it and x j→ ix j, as
well as of their corresponding covariant derivatives: ∂ f

∂ t → i ∂ f
∂ t and ∂ f

∂x j
→−i ∂ f

∂x j
, similarly as being

adopted for quantum dynamic operators. This procedure is not only a mathematical formalism,
but also a significant physical operation, equivalent to transformation from an external observation
to an internal investigation. Really, it is the fact in quantum mechanics that the phase velocity of
de-Broglie waves in the internal phase continuum is superluminal. Somehow, it is equivalent to
converting the role of space⇔ time in the internal superluminal frame comparing with the external
subluminal space-time. Indeed, instead of the real time in 4D-Minkowski geometry one can use
an imaginary time in the corresponding 4D pseudo-Euclid representation. The latter with space-
time {x,−it} is explicitly symmetrical in a mathematical transformation {x,−it} ⇔ {ix, t}, but
for an observation in the subluminal frame the imaginary coordinate is equivalent to a time axis,
while the ”real time” can be accepted as a spatial axis. Therefore, by rescaling dynamic action
with Planck constant (namely, implementing quantum dynamical operators ∂

∂ t → Ê = ih̄ ∂

∂ t and
∂

∂x j
→ p̂ j =−ih̄ ∂

∂x j
) and making the amplitude of the functional parameter ψ of a scale of Compton

length, Klein-Gordon-Fock equation in quantum mechanics is to be formulated explicitly from the
wave-like solution (23) of the higher dimensional gravitational equation (15) in the extended
time-space of sub-Geometry (12) being approximately closer to sub-Geometry (13) as:

− h̄2 ∂ 2ψ

∂ t2 + h̄2 ∂ 2ψ

∂x2
j
−m2

ψ = 0, (24)
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where the square mass term m consists of the following components: m2 = [h̄Ω]2 = m2
0−δm2 =

m2
0−m2

s −m2
L. Applying Fourier transformation from the phasic space to momentum representa-

tion, Equation (24) reads:

E2
ψp−~p2

ψp−m2
ψp = 0. (25)

It leads to the relation E2−~p2 = m2 > 0, then Equation (25) describes subluminal motion of an
elementary particle with energy E and momentum ~p. In comparison with the traditional expres-
sion of the rest mass, the present one includes an additional correction δm associated with the
contribution of the intrinsic spin in 3D-space. The P-even contribution ms linked with an external
curvature of spinning in 3D-space can be compensated in according to 3D-spatial local geodesic
condition when only the linear translation along xl axis is taken into account for a laboratory
frame observation. However, due to P-odd effect being observable in the weak interaction, the
geodesic deviation of the material point by its spinning still induces a small non-zero mass factor
mL � ms which proves a tiny internal curvature of our realistic 3D-space. The latter, in similar
to the time-like cylindrical curvature of real time t, is not observable from the human point of
view of 4D space-time observers, being involved as well in the same global internal cylindrical
curvature caused by the weak interaction. In general, Equation (24) is reminiscent of the squared
Dirac equation of lepton [7]. In case when there is no polarization analysis, m→ m0, Equation
(24) turns to the traditional Klein-Gordon-Fock equation in the linear 3D-space of sub-Geometry
(14) (with {x j}→ {xl}):

− h̄2 ∂ 2ψ

∂ t2 + h̄2 ∂ 2ψ

∂x2
l
−m0

2
ψ = 0. (26)

The consistency between the physical reality of an individual elementary particle and the
quantum statistical interpretation is a dilemma causing an unsolved philosophical problem. Our
proposed model of bi-cylindrical geometrical dynamics would contribute to understanding some
issues of this matter.

First of all, it gives a meaning of the traditional quantum dynamical operators as time-
space converting transformation in the phasic continuum, where the phase velocity of a massive
particle is always faster than light. The specific kind of gravitational waves carrying the functional
variable ψ of metrics gϕϕ along with in the phasic continuum should be superluminal in this
context, and it would be a reason why ones can not observe directly the quantum wave function
ψ except its squared amplitude. Similar to achievements of the 5D-STM theory we succeeded to
derive the quantum mechanical Klein-Gordon-Fock equation. However, there are some significant
differences: formulation of Klein-Gordon equation in (7) from 5D-canonical metric (1) was done
by hand when one defined a signature of the fifth dimension with parameter ε = ±1. In our
model, the signature turns naturally by the above-mentioned time-space converting transformation
under action of the energy-momentum operators. The proper mass of lepton is also generalized,
including all physically realistic phenomena while the mass in 5D-STM theory was determined
qualitatively by the length parameter L.

Secondly, it would shed light on the wave-particle duality of quantum mechanics. Qualita-
tively, the wave-like sub-equation (23) leads to description of a quantum substance as a non-local
object with quantum wave features in 4D space-time. On the other side, the exponential solution
(22) dually describes the same object, but as a material point, i.e. a localized particle following a
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classical geodesics in an extended time-space. A similar conclusion was achieved by 5D-STM the-
ory which derives the dual solutions of 5D-general relativity as a monotonic exponential geodesic
and another wave-like oscillation one, even the duality was obtained by hand-changing signature
of the fifth dimension.

Thirdly, from the homogeneous {3T,3X} bi-geodesic condition it is possible to derive
Heisenberg inequalities from space-time curvatures. Indeed, from the bi-geodesic equation (22)
there two 3D-local geodesic conditions in 3D-time and 3D-space are derived as shown in [11]
which lead to the following local relationships, respectively:

dE0.dt+0 = ψ
−1d

(
i.h̄

∂ψ

∂ t+0

)
dt+0 = i.h̄.dϕ

2. (27)

d pn.dxn = ψ
−1d

(
−i.h̄

∂ψ

∂xn

)
dxn =−i.h̄.dϕ

2. (28)

Based on Equation (27) the time-energy inequality is derived:

|∆E| . |∆t| ≥ |∆E0| . |∆t0|> |dE0| .
∣∣dt+0

∣∣= |i.h̄| .dϕ
2 ≥ ∆ϕ

2
minh̄≥ 0. (29)

Similarly, applying Equation (28) leads to the space-momentum inequality:

|∆p| . |∆x| ≥ |∆pn| . |∆xn|> |d pn| . |dxn|= |i.h̄| .dϕ
2 ≥ ∆ϕ

2
minh̄≥ 0. (30)

The acceleration terms in 3D-local geodesic conditions would be vanished to turn the inequalities
in (29) and (30) equal to zero only when space-time is getting flat. For a non-zero curvature, there
is assumed that both inequalities adopt the condition ∆ϕmin = σ (< ϕ >) =

√
2π , where due to a

statistical observability of the quantum indeterminism, σ is a standard deviation of the mean value
< ϕ >= 2π as a minimum of eigenvalues of the quantized azimuthal angle (ϕ = 2nπ) in an appro-
priate stochastic (Poisson or Gaussian) statistical distribution. The statistical feature is possibly
caused by collective effects of non-localized interaction in 4D space-time between a detector sys-
tem consisted of both human action and experimental apparatus with the observable microscopic
object, however, being distorted in unpredicted way as an individual elementary particle. In the
result, this leads to the traditional Heisenberg inequalities:

|∆E| . |∆t| ≥ 2π h̄. (31)

|∆p| . |∆x| ≥ 2π h̄. (32)

Therefore, the quantum indeterminism is found to originate from time-like and space-like curva-
tures, namely, the time-energy inequality is caused by an intrinsic curvature of 3D-time, while
the space-momentum inequality is caused by a P-even contribution of spinning in 3D-space of an
individual elementary particle. It is in a qualitative agreement with 5D-STM theory which derived
also a Heisenberg inequality (6) of quantum correlation confirming that the 4D indeterminism
takes an origin from the variation of the fifth dimension. Instead, the derivation of Heisenberg in-
equalities (31) and (32) in the time-space symmetrical model is obviously more quantitative and
covers both time-energy and space-momentum correlations, while there is not clear how 5D-STM
approach can reach the origin of a time-energy inequality.
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VI. CONCLUSION

During his debates on the quantum indeterminism which Einstein considered philosophi-
cally unacceptable, he, instead, endorsed to ascribe physical reality of quantum substance to ex-
tradimensions. The achievements of 5D-STM theory as a modern generalization of the induced-
matter K-K theory would be a significant realization of Einstein’s dream. Following the matter-
induced approach, it was found that a special 6D time-space symmetrical model proposed to solve
the problem of microscopic reality is able to reach more quantitative interpretation of quantum
mechanics. The mathematical complexity of 6D-geometry has been facilitated significantly by ap-
plying the traditional cylindrical conditions without compactification. Both 5D-STM and the time-
space symmetrical model belong to the modern Kaluza-Klein geometrical dynamics. Accordingly,
a higher dimensional gravitational equation in vacuum has a duality: a monotonic exponential so-
lution and another wave-like representation. In case of the time-space symmetrical model, it is
able to derive Klein-Gordon-Fock equation of a massive elementary particle from the wave-like
solution, it was found that quantum mechanics is a special technique with its quantum dynamical
operators for describing de-Broglie waves as the superluminal microscopic gravitational waves
in the microscopic phase continuum carrying energy-momentum in the corresponding subluminal
macroscopic space-time. On the other side, the monotonic exponential solution leads to a geodesic
description of an elementary particle, in particular a massive lepton, as a material point in the ex-
tended time-space. In combination, the dual solutions could shed light on origin of the quantum
indeterminism and the wave-particle duality. The present geometrical dynamical interpretation of
quantum mechanics is in a good agreement with more general, but more qualitative conclusions of
the STM group [14,17]. For another quantitative interpretation, as in a homogeneity condition the
geodesic equation is equivalent to de Sitter-like exponential solutions then it serves for modeling
Hubble expansion in the microscopic time-space, in analogue to the standard model of macro-
scopic cosmology. In particular, the proposed microscopic cosmological model with an extension
of time-like EDs to the 3D time-like configurations should correlate strictly with the number three
of lepton generations which has been used to solve the mass hierarchy problem of charged lep-
tons [10]. Consequently, findings from time-space symmetry of microscopic substances would
demonstrate a reasonable approach to the consistency between quantum mechanics and general
relativity.
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