
Communications in Physics, Vol. 26, No. 4 (2016), pp. 335-343
DOI:10.15625/0868-3166/26/4/8371

CALCULATION OF EFFECTIVE EMISSIVITY OF THE CONICAL BASE OF
ISOTHERMAL DIFFUSE CYLINDRICAL-INNER-CONE CAVITY USING
POLYNOMIAL INTERPOLATION TECHNIQUE

TA VAN TUAN AND NGUYEN QUANG MINH†

Center for Systems Engineering and Integration, National Center for Technological Progress

†E-mail: lipro.csei@gmail.com

Received 03 June 2016
Accepted for publication 10 April 2017

Abstract. We have used the polynomial interpolation technique to calculate effective emissivity
of the conical base of isothermal diffuse cylindrical-inner-cone cavities for various cavity pa-
rameters such as axial length, aperture radius in the lid and half-angle of the inner cone. Our
results are compared with what obtained by other authors using the truncated series approxima-
tion technique. The comparative analysis demonstrates considerable accuracy and simplicity of
the polynomial interpolation technique. For applications, a series of explicit analytical expres-
sions in the polynomial forms are also presented.

Keywords: angle factor, cylindrical-inner-cone cavity, effective emissivity, polynomial interpola-
tion, integral equations.

Classification numbers: 78.20.Ci, 42.79.Gn, 02.60.Ed.

I. INTRODUCTION

The artificial blackbody cavities are widely used in metrology as standard sources of ther-
mal radiation. In radiation thermometry, the effective emissivity is often used to evaluate the
difference in radiation characteristics between artificial blackbody and ideal one. In practice, the
value of effective emissivity of an artificial blackbody should be as identified with ideal one as
possible with a relative uncertainty of 0.01% or less. Since the direct and accurate measurement
of effective emissivity is very difficult, therefore the different calculating methods have been used
as a primary mode of investigation of blackbody radiation characteristics [1]. Mathematically, the
calculation of effective emissivity of blackbody cavity is mostly based on two methods. The first
of them is the Integrative Cavity Method (ICM) that describes analytically the radiation exchange
between surfaces inside a cavity [2], and the latter is a stochastic method that is also called the
Monte-Carlo Method (MCM) using ray tracing algorithm [1–3].
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The effective emissivity of a cavity depends on its geometry and used materials [1, 4]. The
calculation of effective emissivity is quite complicated, especially in cases of diffuse cavities. The
cylindrical-inner-cone cavity (Fig. 1) is a specific and widely used geometry of artificial black-
body cavities because it provides both high and uniform effective emissivity with a short overall
cavity length [1,5]. Note that the inner cone causes the obstruction of radiation exchange between
cylindrical-wall surfaces creating partial screening effect of internal surface [1, 5, 6].

Fig. 1. Geometry of the cylindrical-inner-cone cavity [6].

In the ICM, the use of integral
equations based on the theory of ra-
diative heat transfer with the account
of view angle factors is most popu-
larly used in the calculation of effective
emissivity of diffuse cavities [1, 5–8].
In practice, the exact analytical solu-
tions of such integral equations are lim-
ited only for some simple geometrical
configurations of cavities. Therefore,
the numerical calculation methods have
been used in solving those integral equa-
tions for diffuse cavities of complex ge-
ometry [1].

Some investigations of cylindrical-inner-cone cavity geometry were previously carried out.
Chistyakov et al. [7] provided the analytical expressions in the form of a system of integral equa-
tions which serve as the basis for determining the degree of blackness of the cavity model. The
emissivity of the cavity in [7] was calculated using universal program written for computer. Chu et
al. [5, 6] and Berry [8] presented some approximated results obtained by the truncated series ap-
proximation technique. However, in the case of nonisothermal cavities, this series method is able
to give accurate values only with extreme difficult calculation. The truncated series approximation
technique was also applied by Redgrove et al. [9] for a cylindrical-inner-cone cavity in respect to
both mixed diffuse and specular reflection conditions. But that work was limited only in treating
the points on the conical surface and not those on the cylindrical wall. Note that inaccuracies in the
calculations of effective emissivity can occur in cases where singularities exist. The cylindrical-
inner-cone geometry creates singular points at the apex of a cone, or at a junction of the cavity
walls. At some of these points, the view angle factor integrals have an infinite forms which can be
treated with the help of L’Hopital’s rule [1]. In other cases, the singularities of integral equations
may be solved by using zonal approximation technique [10], which transforms the integral equa-
tions for effective emissivity into a summation [1, 10]. The aforementioned techniques are quite
difficult to apply because all expressions are complex and /or given in the implicit forms which
were calculated with iterative process.

Using the expressions for effective emissivity of the isothermal diffuse cylindrical-inner-
cone cavities given in [6], we have derived the first- and second - order view angle factor terms
in the explicit analytical forms and/or in the integral forms. That could make the calculations
of effective emissivity simpler than that previously given by single integration using numerical
technique [11]. Nevertheless, this technique seems to be still complicated and besides that, the
singularities are not evaluated during integration.
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In this paper, we have used the polynomial interpolation technique to calculate effective
emissivity of isothermal diffuse cylindrical-inner-cone cavities with the singularities treated by
L’Hopital’s rule. In particular, effective emissivities of conical base have been calculated for
various cavity parameters such as axial length, radius of aperture in the lid and half-angle of the
inner cone. Our results are compared with what obtained by other authors using the truncated
series approximation technique. The comparative analysis demonstrates considerable accuracy
and simplicity of the polynomial interpolation technique. For further applications, a series of
explicit analytical expressions in the polynomial forms are also presented.

II. MATHEMATICAL FORMULATION

II.1. General Outline
In this work, we follow the same notations used by Z. Chu in [6] to maintain the meaning

of all calculations. Thus, the denotations in Fig. 1 are: θ - half-angle of inner cone; L - the axial
length of the cylindrical portion with unity radius; x - the coordinate of point along the axis of
cylinder from the origin 0 (0≤ x≤ L); y - the coordinate of point along the axis of the inner cone
((0 ≤ y ≤ 1/tanθ); ϕ,r - the polar coordinates in the plane of the aperture; R - the coordinate of
point along a radius of the lid from the center.

The distribution of the effective emissivity of the conical base can be written in terms of
view angle factors, taking into account the diffuse effects [11]. Then, the local emissivity εa(y0)
of a certain point with coordinate y = y0 on the cone of the interested cavity can be calculated by
the following equation:

εa(y0) = 1− (1− ε)dFy0,ap− (1− ε)2
∫ L

0
d2Fy0,xdFx,ap, (1)

where ε - intrinsic surface emissivity of the wall of cavity; dFx,ap - the view angle factor between
a unit area at position x of the cylinder and the aperture; dFy0,ap - the view angle factor between a
unit area at position y = y0 and the aperture; d2Fy0,x - the view angle factor between a unit area at
position y0 and an infinitesimal area at position x;

Practically, the inner cone should not be too long, so that it will not interfere with diffuse
radiation from any unit area of the cylinder to the aperture. The view angle factors dFx,ap, dFy0,ap

and d2Fy0,x are given by [11]:

dFx,ap =
2
π

∫ R

0

∫
π

0

(L− x)(1− r cosϕ)

[(L− x)2 +1−2r cosϕ + r2]2
rdrdϕ (2)

dFy0,ap =
2
π

∫ R

0

∫
π

0

(L− x)(r cosϕ cosθ +Lsinθ − cosθ)

[(L− x)2 + r2 +(1− y0 tanθ)2−2r cosϕ(1− y0 tanθ)]2
rdrdϕ (3)

d2Fy0,x =
2
π

∫
φ(x)

0

[1− (1− y0 tanθ)cosφ ](cosφ cosθ + xsinθ − cosθ)

[(x− y0]2 +1+(1− y0 tanθ)2−2cosφ(1− y0 tanθ)]2
dφdx (4)
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II.2. Treatment of singularities during view angle factors evaluation
The view angle factors dFx,ap, dFy0,ap and d2Fy0,x can be found in the explicit forms by

integrating Eqs. (2)- (4). The evaluation of these integrals is tedious but straightforward by imple-
menting suitable substitutions of variables in the three definite integrals [11]. Finally, we get:

dFx,ap =
(L− x)

2

[
(L− x)2 +R2 +1√

(L− x)4 +2(L− x)2(R2 +1)+(R2−1)2
−1

]
, (5)

dFy0,ap =
cosθ

2(1− y0 tanθ)(L− y0)

{
(L− y0)

2 +(1− y0 tanθ)2 +(1− y0 tanθ)(L tanθ −1)

− [(L− y0)
2 +(1− y0 tanθ)2][(L− y0)

2 +(1− y0 tanθ)2 +R2 +(1− y0 tanθ)(L tanθ −1)]√
[(L− y0)2 +(1− y0 tanθ)2 +R2]2−4(1− y0 tanθ)2R2

+
[2(1− y0 tanθ)+(L tanθ −1)](1− y0 tanθ)R2√

[(L− y0)2 +(1− y0 tanθ)2 +R2]2−4(1− y0 tanθ)2R2

}
,

(6)

d2Fy0,x =
cosθ

π
dx
{[

−8(1− y0 tanθ)2[(x tanθ −1)−1]
(1− y0 tanθ)〈[(x− y0)2 +1+(1− y0 tanθ)2]2−4(1− y0 tanθ)2)〉1.5

+
4(1− y0 tanθ)[(x− y0)

2 +1+(1− y0 tanθ)2][(x tanθ −1)−2(1− y0 tanθ)]

(1− y0 tanθ)〈[(x− y0)2 +1+(1− y0 tanθ)2]2−4(1− y0 tanθ)2〉1.5

+
[(x− y0)

2 +1+(1− y0 tanθ)2]3

(1− y0 tanθ)〈[(x− y0)2 +1+(1− y0 tanθ)2]2−4(1− y0 tanθ)2〉1.5

]
× tan−1

[
2(1− y0 tanθ)+ 〈(x− y0)

2 +1+(1− y0 tanθ)2〉√
[(x− y0)2 +1+(1− y0 tanθ)2]2−4(1− y0 tanθ)2

tan
(

φ(x)
2

)]

+
〈2− [(x− y0)

2 +1+(1− y0 tanθ)2]〉
〈[(x− y0)2 +1+(1− y0 tanθ)2]2〉〈[(x− y0)2 +1+(1− y0 tanθ)2]−2(1− y0 tanθ)cosφ〉

× 〈2(1− y0 tanθ)(x tanθ −1)+ [(x− y0)
2 +1+(1− y0 tanθ)2]〉sinφ(x)

〈[(x− y0)2 +1+(1− y0 tanθ)2]2〉〈[(x− y0)2 +1+(1− y0 tanθ)2]−2(1− y0 tanθ)cosφ〉

− φ(x)
2(1− y0 tanθ)

}
,

(7)

where φ(x) =


π x≥ 1/tanθ

π− sin−1
√

1− (x tanθ −1)2 1/tanθ ≤ x≤ 2/tanθ

π/2− sin−1(1− x tanθ) 0≤ x≤ 1/tanθ .
There are three singular points that require attentions to Eqs. (5), (6) and (7). They have

been not treated in our previous work [11]. The first singular point occurs when x= L and R = 1 in
Eq. (5) when the cavity has no lid. The emissivity of the aperture edge cannot be found directly
from Eq. (5). However, by applying L’Hospital’s rule, the view angle factor dFx,ap is:

lim
x→L−
R→1−

dFx,ap =
1
2
. (8)
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The second singular point occurs when y = 1/tanθ in Eqs. (6) and (7). The emissivity of
the cone apex cannot also be found directly from the Eq. (6). Similarly, the view angle factors
dFy0,ap and d2Fy0,x are given by:

lim
y0→1/tanθ

dFy0,ap =
cosθ

2
, (9)

and

lim
y0→1/tanθ

dF2
y0,x =

cosθ

π
dx

tan2 θ [tan2 θ − (x tanθ −1)2]sinφ(x)
[(x tanθ −1)2 + tan2 θ ]2

. (10)

The third singular point occurs when y = L. This is a singular point mathematically, but not
physically because there are no cylindrical-inner-cone cavities with the apex of re-entrance cone
sticking out of the aperture, i.e. y < L always. Thus, we neglect this point in our treatment.

After treating the singularities, effective emissivity of the conical base can be now re-written
in an explicit and simpler form by introducing Expressions (5)-(10) to Eq. (1). The newly obtained
view angle factors can be calculated inherently by numerical integration using trapezoidal rule as
used in [11] and the distribution of the conical base effective emissivity could be obtained in the
range of (0≤ y≤ 1/tanθ) with difficult calculation.

II.3. Calculation of the effective emissivity of cavity conical base using polynomial interpo-
lation technique
The second-order terms in((1− ε)2 of Eq. (1) have very complicated forms although they

are represented in explicit expressions (6) and (7). In practice, a further simplified version of these
expressions is required. For this purpose, the polynomial interpolation technique can be better
used to represent approximately Expressions (6) and (7).The general formula for an nth-order
interpolating polynomial is:

f (y)' P(y) = a0y0 +a1y1 +a2y2 + ...+anyn,

where f (y) is an approximated function, ai (i = 0, . . . ,n) are the coefficients of the polynomial
P(y). For n+1 data points, there is one and only one polynomial of order n that passes through all
the points. Polynomial interpolation consists of determining the unique nth-order polynomial that
fits n+1 data points. This polynomial then provides a formula to compute intermediate values.

In our case, the approximated function is chosen:

f (y0) =
∫ L

0
d2Fy0,xdFx,ap, (11)

its interpolating polynomials have the forms:

Pf (y0) =
N

∑
n=0

an(1− y0 tanθ)n. (12)

As known, the value of effective emissivity of an artificial blackbody should be as identified
with ideal one as possible, for example with a relative uncertainty of 0.01% or less [1]. It means
that the interpolation error should be within that uncertainty of 0.01%. In applications, to deter-
mine estimating errors, an alternative is to normalize the error to the calculated values itself [12].
In our case, the estimating error for the nth-order interpolating polynomial is equivalent to the dif-
ference between the (n+1)th-order and the nth-order prediction. The required value of estimating
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Table 1. Interpolated expressions of Eq. (12) for variuos cavity parameters with the wall
intrinsic emissivity is 0.7.

L R0 θ (
∫ L

0 d2Fy0,apdFx,ap)
8 0.25 30o 0.00020418(1-ytanθ )2- 0.00057577 (1- ytanθ )+0.00054582
8 0.25 45o 0.0000513802 (1- ytanθ )2 - 0.00030077 (1- ytanθ ) +0.00047492
8 0.25 60o - 0.000012479 (1-ytanθ )2 - 0.00016524 (1- ytanθ )+0.00045043
8 0.5 20o 0.00135148 (1-ytanθ )2- 0.00427454 (1- ytanθ ) + 0.0030296
8 0.5 45o 0.000199282 (1-ytanθ )2 - 0.00117964 (1- ytanθ )+ 0.0018742
8 0.5 60o - 0.0000502749 (1-ytanθ )2 - 0.000648663 (1- ytanθ )+0.0017787
12 0.25 20o 0.0000547286 (1-ytanθ )2- 0.000143944 (1- ytanθ )+0.00013545
12 0.25 30o 0.000020462 (1-ytanθ )2 - 0.000080629 (1- ytanθ )+ 0.00011584
12 0.25 45o 3.59008*10−6(1-ytanθ )2- 0.000046335 (1- ytanθ ) +0.00011213
12 0.5 30o 0.0000806242 (1-ytanθ )2 - 0.000319012 (1- ytanθ ) + 0.00046002
12 0.5 45o 0.00001404 (1-ytanθ )2- 0.00018342 (1- ytanθ ) +0.00044535
12 0.5 60o - 0.00001682 (1-ytanθ )2- 0.00010573 (1- ytanθ )+0.00044589

error is used to determinate appropriate order of interpolation [12]. That is, if the interpolating
polynomial (12) has an order N = 2, the normalized interpolation error is within 10−5. Table 1
presents some explicit expressions of Eq. (12) for various cavity parameters with a wall intrinsic
emissivity is 0.7. We used the second order of interpolation and coefficients an that were found by
elimination method with the known (1− y0tanθ)′s

The first-order terms dFy0,ap of Eq. (1) written in the explicit forms (6) can be calculated
by direct integration as applied in [11] or by polynomial interpolation technique. Our results
obtained by integration or interpolation of dFy0,ap are quite usable for calculation of εa(y0) with
an estimating error of 10−5 or less (Table 2). Note that simultaneous use of the interpolation
polynomials for the first - and second-order terms at the same time in Eq. (1) gives a possibility to
calculate the distribution of effective emissivity εa(y) , (0≤ y≤ 1/tanθ) on the conical base.

III. RESULTS AND DISCUSSIONS

In all of the examples, the wall emissivity have been chosen to have the same constant value
everywhere in the cavity, so the effective emissivity most depends on cavity geometry.

In order to evaluate the accuracy of our obtained results, they have been compared with
ones obtained by Z. Chu et al.in [6]. Because their results were mainly presented in average
values, we have averaged our values obtained for two view angle factor terms in Eq. (1)and made
the comparative analysis shown in Table 2.

Note that in our values of dFy0,ap, the reliability of the interpolation-calculated values are
also compared with the integration-calculated values. We can see that the two sets of values of
dFy0,ap (Table 2) are practically identified and within the uncertainty of 10−4 or less.

The comparative analysis of the first- and second-order terms of Eq. (1) in Table 2 pointed
that our values slightly lower than Z. Chu′s ones. The difference may be due to a series of negative
terms neglected in Z. Chu calculation [6] using the truncated series approximation technique.
However, our and Z. Chu′s values are well identified within an uncertainty of 4.10−4. Noted that
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Table 2. Comparison of the values of the first- and second-order terms of Eq. (1) for
various cavity parameters.

L R0 θ

(dFy0,ap)ave (
∫ L

0 d2Fy0,apdFx,ap)ave
Our results

Z. Chu [6] Our resutls Z. Chu [6]Integration Interpolation
8 0.25 30o 0.0005498 0.000549766 0.0006 0.00028397 0.0003
8 0.25 45o 0.0007318 0.000731752 0.0008 0.00039459 0.0004
8 0.25 60o 0.0008689 0.000868895 0.0009 0.000396679 0.0004
8 0.5 20o 0.0016611 0.00166115 0.002 0.0012888 0.0013
8 0.5 45o 0.002918 0.00291794 0.0031 0.00136147 0.0014
8 0.5 60o 0.0034652 0.00346522 0.0035 0.00145737 0.0015

12 0.25 20o 0.0001697 0.000169667 0.0002 9.48923E-05 0.0001
12 0.25 30o 0.0002342 0.000234167 0.0003 9.41865E-05 0.0001
12 0.25 45o 0.0003193 0.000319266 0.0004 9.40906E-05 0.0001
12 0.5 30o 0.0009353 0.000935335 0.001 0.00029195 0.0003
12 0.5 45o 0.0012753 0.00127534 0.0014 0.000365889 0.0004
12 0.5 60o 0.0015318 0.00153181 0.0016 0.000375528 0.0004

in [6], Z. Chu et al. confirmed high accuracy of their results obtained with the truncated series
approximation technique.

Table 3 shows the average values of the effective emissivity of the conical bases (εa)ave
which were obtained by introducing to Eq. (1) our average interpolated and Z. Chu values pre-
sented in Table 2. The differences between these results are within 0.0001 in average.

Table 3. The average effective emissivity of the bases of isothermal diffuse cylindrical-
inner-cone cavities (εa)ave for some typical cases and a wall emissivity ε = 0.7.

L R0 θ Our techniques Z. Chu
8 0.25 30o 0.999809515 0.999793
8 0.25 45o 0.999744962 0.999724
8 0.25 60o 0.999703629 0.999694
8 0.5 20o 0.999385678 0.999283
8 0.5 45o 0.999002068 0.998944
8 0.5 60o 0.998829277 0.998815
12 0.25 20o 0.999940559 0.999931
12 0.25 30o 0.999921272 0.999901
12 0.25 45o 0.999895751 0.999871
12 0.5 30o 0.999693123 0.999673
12 0.5 45o 0.99958448 0.999544
12 0.5 60o 0.999506662 0.999484

The first- and second-order terms in Eq. (1) now have explicit and simple forms to calculate.
The distributions of εa(y) within the range of (0 ≤ y ≤ 1/ tanθ) can be fully calculated by the
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(a) θ = 30◦ (b) θ = 45◦

Fig. 2. Distributions of the effective emissivity of conical bases of isothermal cylindrical-
inner-cone cavity with L = 8, R0 = 0.5, ε = 0.7. The solid-curves shows the effective
emissivity calculated by the present technique and the dashed-curves shows the effective
emissivity obtained by Z. Chu′s technique [6].

polynomial interpolation technique. For visual comparison, our and Z. Chu’s effective emissivity
values were plotted in Fig. 2. The curves present the distribution of εa(y) in relation with position
coordinate, y tanθ , of cavity base. There are differences in the tendency at the ends of our and
Z. Chu curves. These happen due to our treatment of the singularities at y=0 and y=1. These
calculated results well agree with Z. Chu’s remarks [6] that the blackest location of cavity is at the
junction of the cylinder and the cone, and the less black location is at the apex of the cone.

The comparative analysis demonstrates that such a interpolation is quite suitable and real-
izable technique of calculating cavity effective emissivity in practice. So, instead of the use of
complex expressions in the calculation of effective emissivity, we can use simple expressions ob-
tained by the polynomial interpolation technique. An important difference between our and Z. Chu
technique is not to require any iterative process as used by Z. Chu et al. [6]. This facilitates the
calculation of effective emissivity and relevant radiation cavity parameters.

IV. CONCLUSION

In this paper, we present calculations of the effective emissivity of cone base of isothermal
diffuse cylindrical-inner-cone cavities using the polynomial interpolation technique. The obtained
results demonstrate that the second order of interpolation polynomials is enough for the estimating
error of 10−5. Furthermore, the advantage of this calculating technique is not to require any
iterative process. As the rule, such a technique will facilitate the calculations not only for effective
emissivity, but also relevant radiation cavity parameters. For real-world applications, a series of
explicit analytical expressions in the polynomial forms have been presented.
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