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Abstract. The ripplon modes of two segregated Bose-Einstein condensates (BECs) confined by
one and two hard walls are respectively studied by means of the hydrodynamic approach within
the Gross-Pitaevskii (GP) theory. For the system at rest we find that due to the spatial restriction
the dispersion relations are of the form ω ∼ k2 in low momentum limit for both cases, while for
the system in motion parallel to the interface the dispersion relations for both cases are ω ∼ k at
low momentum limit and, furthermore, the system becomes unstable.
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I. INTRODUCTION

The phase separation in binary mixtures of Bose-Einstein condensates was theoretically
predicted [1, 2] and observed later in experiments [3–8]. Since then many works have been de-
voted to explore the statics, the dynamics and the ripplon modes of two segregated BECs [9–25].
However, most of them concerned with the systems in infinite space, while all experimental real-
izations have been carried out in restricted regions of space with spatial structure being more and
more complicated. In this respect, the present paper deals with the problem: how ripplon modes
are influenced by the spatial restriction when a system of two segregated BECs is confined by one
or two hard walls and the method we use to tackle the problem is the hydrodynamic approach. To
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begin with, let us start from the GP Lagrangian

£ = ∫ d−→r
(

P1 +P2−g12|ψ1|2|ψ2|2
)
, (1a)

Pj = ih̄ψ
∗
j
∂ψ j

∂ t
+

h̄2

2m j

∣∣∇ψ j
∣∣2− g j j

2

∣∣ψ j
∣∣4, (1b)

with m j being the atomic mass of the j component. The intra-s and inter-species interaction cou-
pling constants are defined as

g jk = 2π h̄2a jk

(
m−1

j +m−1
k

)
,

where a jk is the scattering length between the atoms in components j and k. In the following we
assume that two BECs are separated g2

12 > g11g22.
From the Lagrangian (1) the GP equations are deduced straightforwardly

ih̄
∂ψ1

∂ t
=

(
− h̄2

2m1
∇

2 +g11|ψ1|2 +g12|ψ2|2
)

ψ1, (2a)

ih̄
∂ψ2

∂ t
=

(
− h̄2

2m2
∇

2 +g22|ψ2|2 +g12|ψ1|2
)

ψ2. (2b)

This paper is organized as follows. The main body of the work is presented in Sec. II where
the Bernoulli equation is established and the ripplon modes are derived. The conclusion and
discussion are given in Sec. III.

II. RIPPLON MODES

First of all let us establish the Bernoulli equation for the system of two BECs separated by
the interface which is represented by the equation z = z0+η (σ) ,σ = (kxx+kyy−ωt) and located
at z = z0. Assume that the component 1 (component 2) resides in the region z > z0 (z < z0). Then
the Lagrangian (1a) is approximated by

£ = 2π ∫ dxdy
(

η+z0

∫
−∞

dzP2 +
+∞

∫
η+z0

dzP1

)
−αS, (3)

where α is the interface tension and the interface area S is given by

S =
∫

dxdy[1+
(

∂η

∂x

)2

+

(
∂η

∂y

)2

]

1
2

≈
∫

dxdy[1+
1
2

(
∂η

∂x

)2

+
1
2

(
∂η

∂y

)2

], (4)

for interface with negligible thickness. From (3) and (4) we arrive at the Bernoulli equation

P1(x,y,z = z0 +η , t)−P2(x,y,z = z0 +η , t) = α

(
∂ 2

∂x2 +
∂ 2

∂y2

)
, (5)

which corresponds to the classic Bernoulli equation in hydrodynamics [26,27]. Next , we proceed
to the GP equations in linear approximation as made in Ref. [17] writing

ψ j (x,y,z, t,) =
√

n j (x,y,z, t)eiφ j(x,y,z,t), (6)
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in which the particle number density and phase, n j (x,y,z, t) and φ j (x,y,z, t), are decomposed as

n j (x,y,z, t) = n j0 +δn j (x,y,z, t) , (7a)

φ j (x,y,z, t) =−
g j jn j0

h̄
t +δφ j (x,y,z, t) . (7b)

Inserting (6) and (7) into (2) and taking only the first order of δn j,δφ j we are led to the approxi-
mate equations

∇
−→v j = 0, (8a)

h̄
∂

∂ t
(
δφj
)
+g j jδnj = 0, (8b)

assuming that the relative density changes following fluid particles are small compared to the
velocity gradient [28]. The velocity~v j in (8a) is defined as

−→v j =
h̄

m j

~∇δφ j, (9)

Eq. (8a) tells that in the approximation under consideration the condensates are incompressible
fluid.
Based on the approximate equations (8) and (9) the pressure given in (1b) takes the form

Pj =
1
2

g j jn2
j0 +g j jn j0δn j. (10)

To solve (8a) and (9) we adopt the ansatz

δφ j (x) = ϕ j (z)χ j (σ) ,

from which we get the equations (
d2

dz2 − k2
)

ϕ j (z) = 0, (11a)(
∂ 2

∂x2 +
∂ 2

∂y2 + k2
)

χ j = 0, (11b)

with
k2 = k2

x + k2
y .

The Bernoulli equation together with the solutions to Eqs. (11) are the basic ingredients for
calculating the ripplon modes in the following two subsections.

A- One hard-wall case
Assume that the hard-wall is located at z = - h as depicted in Fig. 1.
The geometrical configuration of the system suggests that the reasonable conditions to be

imposed on the two condensates are

∂ϕ2 (z)
∂ z

∣∣∣∣
z=−h

= 0,

ϕ1 (z)→ 0 as z→+∞,

which lead to
δφ1 = (A1 cosσ +B1 sinσ)exp(−kz) ,
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Fig. 1. The interface is located at z = z0 and the hard wall at z =−h.

δφ2 = (A2 cosσ +B2 sinσ)cosh [k(z+h) ] ,

where A j, B j are small parameters.
For simplicity let us restrict to the case

δφ1 = A1 exp(−kz) cosσ , (12a)

δφ2 = A2 cosh [k(z+h) ] cosσ . (12b)

Note that the results to be obtained later remain unchanged if cosσ in (12) is replaced by sinσ .
The kinetic condition at the interface reads

∂η (σ)

∂ t
=

h̄
m1

(
∂δφ1

∂ z

)
z=z0

=
h̄

m2

(
∂δφ2

∂ z

)
z=z0

. (13)

Inserting (12) into (13) yields

−ω
dη (σ)

dσ
=−A1

h̄k
m1

exp(−kz0) cosσ = A2
h̄k
m2

sinh [k(z0 +h) ] cosσ . (14)

The solution to Eqs. (14) provides immediately

η (σ) = η0sinσ , (15)

and

A1 =
η0m1ω exp(kz0)

h̄k
, (16a)

A2 =−
η0m2ω

h̄k sinh [k(z0 +h)]
. (16b)

Eqs. (14) are justified for |kη0| � 1.
Substituting (10) , (12) , (15) , (16) into the Bernoulli equation (5) we arrive at

ω
2 =

αk3

ρ2 coth [k(z0 +h)]+ρ1
, (17)

here ρ1 = m1n10(z0 +0), ρ2 = m2n20(z0−0).
As h tends to infinity Eq. (17) turns out to be

ω =

√
α

ρ1 +ρ2
k3/2,
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which is the well known formula for dispersion relation of ripplon in classic hydrodynamics [26,
27]. At the low momentum limit Eq. (17) behaves like

ω
2 ≈ α (h+ z0)

ρ2
k4, (18)

which is the main result of this subsection.
In order to get a deeper insight into the issue let us extend to the case when condensates flow with
velocity ~Vj parallel to the interface. Then the corresponding stationary state is also represented in
the form (7b) with

φ j =−
g j jn j0

h̄
t +

m j

h̄
−→
V j.
−→r ⊥+δφ j,

where δφ j is given by Eqs. (12). In this case the kinetic condition at the interface (13) is modified
as (

∂

∂ t
+
−→
Vj

∂

∂
−→r⊥

)
η =

h̄
m j

(
∂δφ j

∂ z

)
z=z0

. (19)

Substituting (12) and (15) into (19) gives

A1 =
η0m1

(
ω−~V1~k

)
exp(kz0)

h̄k
, (20a)

A2 =−
η0m2

(
ω−~V2~k

)
h̄k sinh [k(z0 +h)]

. (20b)

After inserting (20) into (5) we are led to the equation

ρ1

(
ω−~V1~k

)2
+ρ2 coth [k (z0 +h)]

(
ω−~V2~k

)2
= αk2,

yielding

ω± =Vck± k
√

ρ1 +ρ2

√
αk− ρ1ρ2

ρ1 +ρ2
V 2

r (21)

here

Vc =
ρ1V1 cosθ1 +ρ2 coth [k (z0 +h)]V2 cosθ2

ρ1 +ρ2 coth [k (z0 +h)]
,

with θ j =
(̂
~Vj,~k

)
.

It is easily seen that as h tends to infinity (21) turns out to be

ω± = Vc k±

√
αk3

ρ1 +ρ2
− ρ1ρ2V 2

r k2

(ρ1 +ρ2)
2 , (22)

which is a well known result.
The small-k behavior of (21) reads

ω ≈V2 cosθ2k±
√
−ρ1

ρ2
(h+ z0)Vrk3/2. (23)

Eq. (23) indicates that the Kelvin-Helmholtz instability always occurs for Vr =
∣∣∣~V1−~V2

∣∣∣> 0.
Next let us go over to the two hard-wall case.
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B- Two hard-wall case
Assume that the condensate 1 (condensate 2) resides in the region z > z0 (z < z0) and the

hard wall 1 (2) is located at z = h1 (z = −h2) as plotted in Fig. 2. Then the boundary conditions
we impose at the two hard walls are the Dirichlet ones

∂ϕ1 (z)
∂ z

∣∣∣∣
z=h1

= 0,

∂ϕ2 (z)
∂ z

∣∣∣∣
z=−h2

= 0.

Fig. 2. The interface is located at z = z0 and two hard walls at z = h1 and z =−h2 , respectively.

The solutions of Eqs. (11) fulfilling the foregoing conditions read

δφ1 = (C1 cosσ +D1 sinσ)cosh [k(h1− z) ] ,

δφ2 = (C2 cosσ +D2 sinσ)cosh [k(z+h2) ] ,

in which C j,D j are small parameters.
Without loss of generality we can use only the solutions

δφ1 =C1 cosh [k(h1− z) ] cosσ , (24a)

δφ2 =C2 cosh [k(z+h2) ] cosσ , (24b)

in what follows. Substituting (24) into the kinetic condition at the interface (13) we obtain

C1 =
η0m1ω

h̄k sinh [k(h1− z0)]
,

C2 =−
η0m2ω

h̄k sinh [k(z0 +h2)]
,

which together with the Bernoulli equation (5) give

ω
2 =

αk3

ρ1 coth [k(h1− z0)]+ρ2 coth [k(z0 +h2)]
, (25)

taking the familiar form

ω =

√
α

ρ1 +ρ2
k3/2,

as h1,h2 tend to infinity.
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At the low momentum limit (25) behaves like

ω
2 ≈ α (z0 +h2)(h1− z0)

ρ1 (z0 +h2)+ρ2 (h1− z0)
k4. (26)

Eq. (26) is the main result of this subsection.

Finally, let us extend to the case when the j-component flows with velocity ~Vj parallel to the
interface. The calculation analogous to what we did before provides

ω± =Vc k±

√
αk3

ρ1 coth [k(h1− z0)]+ρ2 coth [k (z0 +h2)]
− ρ1ρ2 coth [k(h1− z0)]coth [k (z0 +h2)]V 2

r k2

(ρ1coth [k(h1− z0)]+ρ2 coth [k (z0 +h2)])
2 ,

(27)
here

Vc =
ρ1V1cosθ1 coth [k(h1− z0)]+ρ2V2cosθ2 coth [k (z0 +h2)]

ρ1 coth [k(h1− z0)]+ρ2 coth [k (z0 +h)]
.

It is easy to check that Eq. (27) will get the form (22) when letting h1,h2 tend to infinity. The
small-k behavior of (27) reads

ω ≈

(
(h1− z0)ρ2V2cosθ2 +(z0 +h2)ρ1V1cosθ1

(h1− z0)ρ2 +(z0 +h2)ρ1
±

Vr
√
−ρ1ρ2(h1− z0)(z0 +h2)

(h1− z0)ρ2 +(z0 +h2)ρ1

)
k. (28)

Eq. (28) indicates that the Kelvin-Helmholtz instability always occurs for Vr =
∣∣∣~V1−~V2

∣∣∣> 0.

III. CONCLUSION

In the foregoing section we obtained the main results as follows:

- Due to the spatial restriction the dispersion relation of ripplon is changed, it is of the
form ω2 ≈ k4, instead of ω ≈ k3/2.

- When the two condensates flow in parallel to the interface the ripplon dispersion rela-
tion turns out to be ω ≈ k and the system becomes unstable.

We derived the above results starting from the assumption that the condensates are incom-
pressible. However, it is important to note that taking into account the compressibility means that
in the expressions found previously we have to add the correction of the orders of Mach number(

v
vs

)2
[29], here v is the typical speed of the system and vs the speed of sound in fluid. In the low

momentum limit this ratio can be treated as negligibly small, of course. Therefore, the full picture
of the system remains unchanged at low energy with the involvement of compressibility . Hence,
our results are entirely reliable for guiding the numerical computation of ripplon dispersion rela-
tion in a system of two segregated BECs.

Last but not least, it is interesting to note that for systems of two segregated BECs limited
by two hard walls the ripplon dispersion relation similar to (25) was derived in Refs. [19, 30] by
means of the perturbative approximation to GP equations.
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