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Abstract. The micro-lens arrays created by ultrasonic waves in the acousto-optical material (OAM) have been pro-
posed and investigated. In previous works, the simulation results showed that the proposed micro-lens can be used
for optical tweezers arrays to trap an assembly of micro-particles. In this article, the micro-particle sieving capability
of optical tweezers arrays in Germanium modulated by ultrasonic waves is presented. The sieving processes are con-
trolled by changing of initial phase or intensity and frequency of ultrasonic waves. The simulation results show that the
optical tweezers arrays will act as the dynamical one, which can sieve the dielectric micro-particles in 3D space in the
embedding fluid.
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I. INTRODUCTION

Up to now, there are many methods as using diffractive elements [1–3], using micro-lens
arrays fabricated by proton beam writing [4], using image processing techniques [5], and intelli-
gent control techniques [6], proposed to create the optical tweezers arrays to trap an assembly of
micro-particles. The aim of all methods is to create an array of small laser spot, in which the laser
intensity gradient is large [7]. The arrays of micro-lens with high numerical aperture (NA) are
appreciable tool for this aim.

As shown in work of Sow and colleagues [4], the micro-lens arrays must be fabricated
through process from proton writing to thermal heating, unfortunately, the dimension of micro-
lens and spatial period are fixed, due to the unchanged of the input parameters. So that, it should
not be resourceful if they are used for the optical tweezers arrays, which should be changed in
accordance with trapped objects (micro-particles).
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As well known, the acousto-optical devices proposed to use for partial reflection of light
(beam splitter), and the Bragg cell have numerous applications in photonics [8]. It is fortu-
nate, McLeod and Arnold have discussed about the tunable acoustic gradient index lens in liq-
uid [9–11, 21]. The results presented in those works give us the idea to use two perpendicular
ultrasonic waves for creating the 2D arrays of micro-lens in extra-dense flint glass (EDFG) [12]
and first time show out the trapping capability of optical tweezers using created micro-lens [13,14].
Consequently, the optical tweezers arrays using micro-lens arrays created in Germanium having
larger figure of merit by ultrasonic waves can be used for trapping the bigger particle as bio-
molecule [15]. Up to now, there is a question how to catch the micro-particles embedded sparsely
in fluid by those optical tweezers.

To answer above question, in this work, firstly, we present the micro-lens arrays optical
modulated in Germanium by ultrasonic waves; secondly, the simulation of process to sieve the
micro-particles and discussion about the capability to control the trapping positions in 3D space
of embedding fluid.

II. THE SAMPLE OF OPTICAL TWEEZERS ARRAYS IN GERMANUIM

The optical tweezers arrays using micro-lens modulated by ultrasonic waves in Germanium
is shown in Fig. 1(a). The refractive index of a square Germanium plate is modulated by two
perpendicular ultrasonic waves from two LiNbO3-transducers, which is supplied by the radio
frequency signal generator (Fig. 1(b)). Then the Germanium plate becomes a micro-lens arrays.
The original laser beam is expanded by two lenses, so that its intensity distribution approximately
is uniform in entry plane of Germanium plate. Propagating through Germanium plate (micro-lens
arrays) the laser beam is separated into sub-beams, which is focused in the fluid with micro-
particles. Every focused laser sub-beam become an optical tweezers.

In own work, Kotopoulis showed that the frequency and intensity of ultrasonic waves gen-
erated from LiNbO3-transducer can be controlled by changing the intensity and frequency of
the applied radio signal [16]. Consequently, the dimension of micro-lens and spatial period of
micro-lens arrays in proposed sample may be changed by applied radio signals. Moreover, with
changing of the acoustic intensity, the gradient of refractive index, and consequently, the focal
length of micro-lens and the numerical aperture of micro-lenses will be changed. So, to control
the focus spot in Z-direction, the intensity of ultrasonic wave must be controlled, while to control
the focus spots of micro-lenses in the plane (X ,Y ), the initial phase and frequency of ultrasonic
waves must be controlled by the applied radio signal. The controlling process of micro-lens arrays
is the sieving process of micro-particles, which will be presented in the next section.

III. 2D SIEVING PROCESS

Considering two identical acoustic plane wave propagate in the X- and Y -directions of
Germanium plate (see Fig. 1), then the strain at positions x and y and time t are given as follows [8,
17]:

Sx(x, t) = S0 cos(Ωt−2πx/Λ+φx) , (1)

Sy(y, t) = S0 cos(Ωt−2πy/Λ+φy) , (2)
where, S0 is the amplitude; Ω = 2πFs is the angular frequency; Λ =Vs/Fs is wavelength; φx,φy are
the initial phase in x- and y-direction, respectively; Fs is frequency; and Vs is the velocity. Due to
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(a) (b)

Fig. 1. (a) Schematic diagram of optical tweezers arrays, and (b) Germanium crystal
modulated by two ultrasonic waves from LiNbO3-transducer

the interference of two waves, from Eq. (1) and Eq. (2), the strain at position (x,y) and time t is
given follows:

S(x,y)(x,y, t) = S0 [cos(Ωt−2πx/Λ+φx)+ cos(Ωt−2πy/Λ+φy)] . (3)

The strain S(x,y)(x,y, t)creates a proportional perturbation of the refractive index in Ge, anal-
ogous to the Kerr effect [8]:

∆n(x,y, t) =−1
2

γn3S(x,y)(x,y, t), (4)

where γ is a phenomenological coefficient known as the photo-elastic constant, n is the refractive
index of Germanium in the absence of sound. Because the acoustic frequency is typical much
smaller than the optical frequency, an adiabatic approximation for studying light-sound interaction
may be adopted. Considering that two waves are phase matching, i.e. φx = φy = φ . Using Eq. (3)
and Eq. (4), the spatial-varying inhomogeneous refractive index is [15]:

n(x,y) =n−∆n0 [cos(2πx/Λ+φ)+ cos(2πy/Λ+φ)]

≈n−2∆n0 cos
(

π
x+ y

Λ
+φ

)
cos
(

π
x− y

Λ

)
, (5)

where ∆n0 =
√

MIs/2 is the amplitude of refractive-index wave, i.e. a material parameter rep-
resenting the effectiveness of sound in altering the refractive index, M = γ2n6/ρV 3

s is a figure
of merit for the strength of the acousto-optic effect in the material, ρ is the mass density of the
medium, and Is is the intensity of sound. The acousto-optic material with refractive index dis-
tributing as shown in Eq. (5) became a micro-lens arrays.

As an example, we use the Germanium crystal, which is one of the effective acousto-optic
crystals with figure of merit is about 103 times larger than one of the extra-dense flint glass [17,18].
The main parameters of Germanium are given as: optical transmission of(2.0÷ 20.0)µm, mass
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density of g = 5.33g/cm3, acoustic velocity in Germanium of Vs = 5.5 km/s [17], refraction index
of n = 4.0, and figure of merit of M = 1.68×10−11 m2/W. Consider the refractive index of crystal
Germanium is modulated by two ultrasonic waves from LiNbO3 transducer with intensity of about
Is = 3×104 W/m2 [16] and the frequency of Fs = (25÷500) MHz, consequently, wavelength of
Λ = (550÷11)µm. This ultrasonic wave creates a refractive-index wave of amplitude about
2∆n0 ≈ 1.0×10−3. Assuming the initial phase of two waves is same of ϕ = 0, the refractive index
distribution in area 3Λ×3Λ of crystal Germanium is simulated and illustrated in Fig. 2.

The period appearance of graded-index area of Λ×Λ (see Fig. 3a) leads the acousto-
modulated crystal Germanium to become 2D micro-lens arrays. With the initial phase of (ϕ = 0),
in the area of 3Λ× 3Λ there are 9 micro-lenses, whose centers,(xi,yi), are equidistant from each
adjacent one in both directions X and Y with a distance of Λ (Fig.2). From Fig.3a, the center of
the first micro-lens can be described by following relation:

(x1 = 0.5Λ,y1 = 0.5Λ) i f φ = 0 (6)

 

 
 

 

n(x,y) ( )i ix , y

Fig. 2. Distribution of refraction index in area 3Λ× 3Λof crystal Germanium and the
position of the center of micro-lens(xi,yi)

Assuming the initial phase of two waves will be changed, for example ϕ = π/4 and ϕ =
π/2. The center of the first micro-lens has changed as shown in Figs. 3b and 3c. The positions of
center of ith micro-lens can be described by following relations:{

(x1 = 0.375×Λ,y1 = 0.375×Λ) i f φ = π/4
(x1 = 0.250×Λ,y1 = 0.250×Λ) i f φ = π/2 (7)

From the refractive index distribution in Fig. 2 and Eqs. (6) and (7), the position of the
center of ith micro-lens can be described by following relations:{

xi(yi) = [0.5+(i−1)] Vs
Fs

i f φ = 0
xi(yi) = [0.5−5(φ/π)+(i−1)] Vs

Fs
i f φ 6= 0

(8)
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As shown in Fig. 1, the center of micro-lens is the center of the independent optical tweez-
ers. So the center of the independent optical tweezers can be sieved by changing of the initial
phase and frequency.

Assuming that, initially, with chosen initial phase and frequency of ultrasonic waves, the
micro-particles are trapped in the centers of all independent tweezers. If the frequency or ini-
tial phase of ultrasonic waves are changing, the positions of micro-particles will be periodically
changed in both directions X and Y (the distance between two micro-particles is not changed).
Instead, with given initial phase and frequency the micro-particles are not trapped in centers of all
independent tweezers, it is need to change initial phase or frequency to catch micro-particles. This
process will be called 2D sieving process. There are advantages in comparison to the micro-lens
arrays fabricated by proton beam writing [4], that the acousto-modulated micro-lens arrays have
the controllable spatial period,Λ, by acoustic frequency and the controllable position of micro-
lenses by the acoustic frequency or initial phase.

 

                                     a                                       b                                   c 
Fig.3 Sieving process of the first micro-lens by changing  initial phases of acoustic 

waves: a) 0ϕ =  , b: / 4ϕ π= , c:- / 2ϕ π= . 

 
 

(a) (b) (c)

Fig. 3. Sieving process of the first micro-lens by changing initial phases of acoustic
waves: (a) ϕ = 0, (b) ϕ = π/4, (c) ϕ = π/2

IV. SIEVING IN Z-DIRECTION

Now, we pay attention on one independent optical tweezers, whose center is located at point
(xi,yi), it means the refractive index distribution reaches the maximum value at point (xi,yi), and
the initial phase to be zero ϕ = 0, i.e. xi = yi. By using trigonometry relations, from Eq.(5) the
refractive index distribution in the area of (x < Λ,y < Λ) of the micro-lens can be approximately
rewritten as follows:

n(x,y)u−n4∆n0

[
cos2

(
π

ρ

Λ

)
− 1

2

]
(9)

where ρ =
√

x2 + y2 is defined as the radial radius. From Eq.8, the refractive index distribution in
the circle of radius Λ/2 can be rewritten as follows [13, 14]:

n(ρ)∼= n+4∆n0

(
1
2
− ln2

π2ρ2

(Λ/2)2

)
, (10)
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which describes the refractive index distribution of the GRIN micro-lens [8]. From Eq. 10, the
focal length of micro-lens is given by:

fs =
Λ2

4ln2∆n0d
or fs =

(Vs/Fs)
2

4ln2
√

MIsd
, (11)

where d is the thickness of OAM.
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Fig.4 Focal length (or depth of foci) vs. 
acoustic frequency. 

The focal length-acoustic frequency 
characteristic in Fig.4 show that it is able 
to sieve the particles in Z-direction by 
changing frequency. But, with the 
increasing of the frequency, i.e. with 
decreasing of the wavelength ( /s sV FΛ = ), 

the focal length decreases. This leads to 
first situation that the numerical aperture 
of the micro-lens ( ) will be 
changed, which influences on the trapping 
capability of optical tweezers. 

 

Fig. 4. Focal length (or depth of foci)
vs. acoustic frequency

As the operation principle of optical
tweezers, the dielectric particle is trapped
in the foci of lens. So, to sieve micro-
particle in the z-direction, i.e. in the laser
beam axis, the focal length (or depth of
foci) must be changed. As shown in Eq.11,
the focal length of micro-lens depends on
two changeable parameters as frequency
(F) and intensity of acoustic wave, since
the parameters of OAM could be chosen
in practice. Considering the thickness of
Germanium plate is of 1mm (d=1mm) and
using given parameters above, the depen-
dence of the focal length (or depth of foci)
of micro-lens on acoustic frequency is illus-
trated in Fig. 4.

The focal length-acoustic frequency characteristic in Fig. 4 show that it is able to sieve the
particles in Z-direction by changing frequency. But, with the increasing of the frequency, i.e. with
decreasing of the wavelength (Λ =Vs/Fs), the focal length decreases. This leads to first situation
that the numerical aperture of the micro-lens (NA ≈ n f Λ/ fs) will be changed, which influences
on the trapping capability of optical tweezers.
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Fig.5 Acoustic intensity vs. acoustic frequency for fs=10µm. 
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Fig.5 Acoustic intensity vs. acoustic frequency for fs=10µm. 
 

(a) (b)

Fig. 5. Acoustic intensity vs. acoustic frequency for fs = 10 µm
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It is fortunate, the limit conditions for that the numerical aperture is higher 1 (NA > 1)
have been found out and presented in previous works [18, 19]. The second situation that the focal
length depends on the acoustic intensity too (see Eq.11), so what is the ways to sieve the particles
in a fixed plane (X, Y) at a depth (zs) in the fluid. Using Eq. 11, the relation between intensity and
frequency of acoustic wave so that zs = fs = 10 µm = const is illustrated in Fig. 5.

As shown in Fig. 5, we can see that to sieve particles in plane (X ,Y ) at the depth of zs=10µm
inside fluid by changing acoustic frequency in the interval of (250÷500) MHz, we can control the
relating acoustic intensity not more than 0.6 W/m2 (see Fig. 5a). Meanwhile, when using higher
acoustic intensity up-to 3× 104 W/m2, the acoustic frequency can be reduced down-to 18 MHz
(see Fig. 5b).

V. CONCLUSION

The sieving process of micro-particles in optical tweezers arrays created in Germanium
plate modulated by ultrasonic waves is investigated. The simulation results show that the sieving
process can be done in 3D space of embedding fluid with controlled initial phase, intensity and
frequency of acoustic waves. Moreover, the micro-particles located in fixed plane (X,Y) of the
fluid will be trapped if the acoustic intensity is chosen suitable to the controlling frequency. With
the focal length of millimeters and the dimension of micrometers, the arrays of the micro-lens in
Germanium modulated by ultrasonic waves with frequency in range (18÷100) MHz and intensity
up-to 3×104 W/m2, generated from LiNbO3-transducer as shown in [16], are useful for designing
the optical tweezers arrays to sieve the biological molecules in 3D space of embedding fluid.
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