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Abstract. We study the magnetic ordered phases of the spin-1/2 Heisenberg antiferromagnetic model with nearest J1
and next nearest neighbor J2 exchange interactions on the square lattice using fermionic representation of spin oper-
ators within Popov-Fedotov approach.The unphysical states are eliminated on each site by introducing an imaginary
chemical potential. Working in local coordinate system for every site we investigate the different ordered phases in
dependence on exchange parameters. At T = 0 we recover the conventional spin wave results.
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I. INTRODUCTION

Recently, geometric frustration in spin systems has attracted a lot of interest. The dis-
covery of the ceramic high-temperature superconductivity has stimulated great interests in study-
ing possible novel phases in frustrated quantum antiferromagnet on two-dimensional lattices [1].
The square lattice antiferromagnetic Heisenberg model with frustration introduced by next nearest
neighbor exchange interaction has been investigated by many authors with various approximate
and numerical methods: the spin wave theory [2, 3]; small lattice calculations [4]; the Schwinger
boson theory [5]; series expansion [6] and other methods [7].

However, there is a considerable discrepancy between the results of above works, in par-
ticular for the ground state properties of the system. The reason is the complex nature of spin
operators.

The non - canonical commutation relations of spin operators pose a severe difficulty for
analytical treating quantum spin systems. Because spin operators satisfy neither Fermi nor Bose
commutation relations, there is no Wick theorem directly for spin operators. Therefore, the stan-
dard methods widely used for pure Bose or Fermi systems cannot be applied. Several approaches
have been developed for the investigation of spin systems. One can formulate a coupled system of
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Heisenberg equations for the spin Green functions. In order to solve the coupled system of Green
functions one has to decouple the higher order functions by some plausible criterion. As a result,
one cannot systematically estimate the decoupling error. The second method is based on vari-
ous representation of spin operators by some auxiliary fields such as Bose operators (Schwinger
bosons, Holstein-Primakoff or Dyson-Maleev representation) or Fermi operators. However, in
all cases, the representation of spin operators as a bilinear combination of canonical operators
enlarges the dimension of the Hilbert space of these auxiliary fields, so the spurious unphysical
states appear and should be eliminated from the consideration.

The exclusion of these unphysical states may be done by some local constraint procedure
with the fixed number of auxiliary particle on each site. Unfortunately, on the most cases, one
cannot treat the local constraint exactly and usually one replaces the local constraint by a global
one, where the number of auxiliary particles is fixed only as an average number for all sites.
It is known that this replacement is questionable because the approximation for spins became
uncontrollable. In order to avoid the main difficulty related with the local constraint in 1988
Popov and Fedotov suggested a new simple method, where the spin 1/2 and spin 1 operators are
represented by the fermions with imaginary chemical potential [8]. This allows the application of
standard fermionic perturbation techniques for spin systems. Later, the Popov-Fedotov trick was
extended to arbitrary spin by introducing propre chemical potential for auxiliary fermions.

Recently, the Popov-Fedotov method was generalized to boson and fermion models with
various constraints on Fock states. This extension leads to the possible successful application of
Bold Diagrammatic Monte Carlo to quantum spin systems [9]. While the paper [8] are basically
of a methodological nature, the Popov-Fedotov approach has been used for investigation of or-
dered phase different particular spin systems: the three dimensional ferromagnetic Heisenberg
model [10], the isotropic Heisenberg antiferromagnets on a square, hypercubical [11, 13] and tri-
angular lattices [14]. The Popov-Fedotov has been applied successfully also to the negative-U
Hubbard Model [15], spin glass model [16]...

In this paper we apply the Popov-Fedotov trick to a square lattice frustrated Heisenberg
antiferromagnet. In what follows in Sec. II we introduce the model and its fermionization. In
Sec. III we derive the free energy and the sublattice magnetization in the mean field and the one
loop approximations. The last section is devoted to discussions.

II. THE MODEL AND ITS FERMIONIZATION

We consider the frustrated square lattice Heisenberg model defined by the Hamiltonian:

H = J1 ∑
<i j>

SiS j + J2 ∑
<<ik>>

SiSk (1)

where J1,J2 > 0 describe the exchange interaction between the nearest neighbors and the next-
nearest neighbors on the square lattice of N sites. The operators Si are the quantum spin operators
on lattice site i. We study here the extreme quantum case S = 1/2, when quantum fluctuations tend
to be the largest. For the classical limit (S = ∞), the model has a phase transition at J2/J1 = 1/2,
below which the ground state has the conventional Neel order with two sublattices. For large value
of the coupling J2 , which introduces frustrations into the model the Neel state cannot be stable
and in the large J2 limit the above mentioned sublattices are decoupled and each of them has its
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own antiferromagnetic order. In this paper we consider the Neel state (AF) with the ordering wave
vector Q=(π ,π) and the so-called collinear phase (AFC) with Q=(π ,0).

In our previous work [14] we have shown that the magnetic order state of spin 1/2 anti-
ferromagnetic Heisenberg model with nearest-neighbors coupling on hypercubic and triangular
lattices may be studied in rather simple unified way using the Popov-Fedotov trick in combination
with a transformation to the local coordinates defined for every site. The extension to the model
(1) with the next-nearest-neighbors bond J2 is straightforward. We adopt the same notations as
in Ref [14]. Firstly, we rewrite the Hamiltonian (1) in the new local spatially varying coordinates
Ox’y’z’ with Oz’ pointing along the local classical Neel direction, the y’-axis is invariable:

H = J1 ∑
<i j>

{
Sy

i Sy
j−
(

Sx
i Sx

j +Sz
i S

z
j

)}
+ J2 ∑

<<ik>>

SiSk (2)

Then we represent the spin operators in term of auxiliary Fermi operators:

Sα
i =

1
2 ∑

σσ ′
a+iσ τ

α

σσ ′aiσ ′ (3)

where τ = (τx,τy,τz) are the Pauli matrices. Because the Fock state of the fermion aiσ is spanned
by four states, the two unphysics states have to be excluded by the constraint:

N̂i = ∑
σ

a+iσ aiσ = 1 (4)

As it was shown by Popov-Fedotov, the constraint is enforced by introducing to the partition
function the projection operators:

P =
1
iN

ei π

2 N̂ (5)

where N̂ = ∑
i

N̂i. As a result, the fermionic Matsubara frequencies are modified as follows:

ω̃F = ωF −
π

2β
=

2π

β

(
n+

1
4

)
(6)

III. MEAN FIELD AND ONE LOOP EQUATIONS

The 4-fermion terms in the partition function may be eliminated by a Hubbard-Stratonovich
transformation, introducing the Bose auxiliary field ϕi. After integration over the bilinear Grass-
mann variables, the partition function of the Hamilton (1) may be written as follows:

Z =
1
iN

1
Zo

∫
ϕ(B)=ϕ(o)

[Dϕ]e−Se f f [ϕ] (7)

with the effective action Se f f [ϕ] being:

Se f f [ϕ] =
β

∫
0

So [ϕ]dτ− lndetβ K̂ (8)
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At the one loop approximation the effective action on Eq. (8) is given by:

Se f f =
β

2 ∑
Ωn

Φ̄ioÂi j (Ωn)Φio−∑
i

ln
2
i

cosh
β |ϕio|

2

+
β

2 ∑
i j,Ωn

{
Φ̄ioĈi j (Ωn)δΦj (Ωn)+δ Φ̄i (−Ωn)Ĉi j (Ωn)Φjo

}
+

β

2 ∑
i j,Ωn

{
δ Φ̄i (−Ωn) D̂i j (Ωn)δΦj (Ωn)

}
(9)

where the following notations are used:

Âi j (Ωn) =δΩn,0
(
Ĵ−1)

i j (10)

Ĉi j (Ωn) =δΩn,0
(
Ĵ−1)

i j +
2
β

K̂i1δi jδΩn,0 (11)

D̂i j (Ωn) =δΩn,0
(
Ĵ−1)

i j +
1
β

K̂i2δi jδΩn,0 (12)

The three component spinors in terms of the components of the auxiliary field ϕi are introduced.(
Ĵ−1
)

i j is the inverse matrix of the exchange coupling. K̂i1 is given by:

K̂i1 =−
1
4

β

|ϕio|
tanh

β |ϕio|
2

Î (13)

Because we are working in the local coordinate systems then in mean field level we have: ϕ
±
io = 0;

ϕ
z
io = ϕo for every site i and Kαβ

i2 become:

K+−
i2 =

(
K−+i2

)∗
=−β

4
1

(ϕio + iΩ)
tanh

βϕo

2
(14)

Kzz
2 =− β

4
(
1−4m2

o
)

δω,0 (15)

Following the least action principle, the mean field equation for the auxiliary field ϕio is written
as:

∑
j

(
Ĵ−1)

i jΦjo =
Φio

2 |ϕio|
tanh

β |ϕio|
2

(16)

The sublattice magnetization is related to the averaged of the auxiliary field
〈
ϕ j
〉

as:

mα
i = ∑

j,β

(
J−1)αβ

i j ϕ
β

j (17)

From Eq. (16) and Eq. (17) we obtain the mean field equation of the magnetization as follows:

mio =
1
2

tanh
β ∑ j

(
Ĵ
)zz

i j m jo

2
(18)

In the absence of the external magnetic field all the sublattices are equivalent and from Eq. (18)
one gets:

mo =
1
2

tanh [2β (J1− J2)mo] (19)
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for AF state and:

mo =
1
2

tanh(2βJ2mo) (20)

for AFC state. The above equations lead to the phase transition temperature TC:

kBTC = (J1− J2) (21)

for AF state and:

kBTC = J2 (22)

for AFC state. For both phases the critical temperatures are twice larger than the Neel temperatures
obtained in the case of using global constraint instead of local one. In order to take into account
the fluctuation correction we perform the Fourier transformation for the last term of the affective
action in Eq. (9) and obtain:

S(2)e f f =
β

2 ∑
p,Ω

δ Φ̄(−p,−Ω) D̂(p,Ω)δΦ(p,Ω) (23)

where the kernel D̂(p,Ω) reads:

D̂(p,Ω) = J̃−1 (p)+
1
β

K̂2 (p) (24)

On Eq. (24) we use the following notations:

K̂2 (p) =

 0 K+−
2 0

K−+2 0 0
0 0 Kzz

2

 (25)

with:

K+−
i2 =

(
K−+i2

)∗
=− mo

2(4Jmo + iΩ)
(26)

and Kzz
2 is given by Eq. (15). J̃−1 (p) is the Fourier transformation of the coupling

(
J−1
)αβ

i j in the
(+,−,z) basics. Intergrating over the fluctuation field δΦ(Ω) we obtain the fluctuation contribu-
tion to the partition function:

Z f l =
[
det
(
Î + J̃ (p) K̂2 (p)

)]1/2 (27)

From Eq. (2) we get the following non-zero components of the coupling matrix J (p) in (x,y,z)
basics. For AF phase:

Jxx (p) = Jzz (p)≡ X = 4J1 [γ (p)−αη (p)]
Jyy (p)≡ Y =−4J1 [γ (p)+αη (p)] (28)

For AFC phase:

X =Jxx (p) = Jzz (p)≡ X = 2J1 [2αη (p)+ cos px− cos py]

Y =Jyy (p) =−4J1 [γ (p)+αη (p)]
(29)
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where:

γ (p) =
1
2
(cos px + cos py)

η (p) =cos px.cos py

α =J2/J1.

(30)

Then in the basics (+,−,z), the coupling matrix J̃ is determined by:

J̃ =

 X−Y X +Y 0
X +Y X−Y 0

0 0 X

 (31)

Using Eq. (15), Eq. (26) and Eq. (31) we arrive at:

det
(
Î + J̃ (p) K̂2 (p)

)
= ∏

p
(1+XKzz

2 )∏
Ω

Q(Ω) (32)

where:
Q = 1+(X +Y )

(
K−+2 +K+−

2

)
+4XY K−+2 K+−

2 (33)
The product over the bosonic Matsubara frequencies may be performed using the following rela-
tion:

∞

∏
n=0

[(
1+

a
(n+b)

)(
1− a

n+ c

)]
=

Γ(b)Γ(c)
Γ(a+b)Γ(c−a)

(34)

with Γ(z) being the Gamma function. Then the free energy in the one loop approximation is given
by:

F =
Nam2

o

2
− N

β
ln
(

2cosh
βamo

2

)
+

1
β

∑
p∈BZ

ln
sinh βamoω(p)

2

sinh βamo
2

+
1

2β
∑

p∈BZ
ln
[

1− β

4
(
1−4m2

o
)

X
] (35)

where:

ω
2(p) =

(
1− X

a

)(
1− Y

a

)
(36)

and:

mo =
1
2

tanh
βamo

2
(37)

For AF phase a = 4J(1−α) and X ,Y are given by Eq. (28). For AFC phase a = 4αJ and X ,Y
are given by Eq. (29). We note here that the derivation of the free energy Eq. (35) in this paper
is carried out by different way in comparison with the one in [14] and seems to be much more
simpler.

In order to calculate the sublattice magnetization in one loop approximation, we introduce
local field ~Bi in the direction of the local classical magnetization. The free energy in the presence
of the local magnetic field F(B) is given by the same Eq. (35) with the following substitutions:

mo→ mo +∆mB

∆m =
β

2 (1−4m2
o)

1+ βa
4 (1−4m2

o)

(38)
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The sublattice magnetization is given as follows:

m =

[
−∂F(B)

∂B

]
B=0

(39)

From (35), (38), and (39) we obtain:

m(T) = mo +
1

4mo
(1+a∆m)− mo∆m

N ∑
p∈BZ

X
1− βX

4 (1−4m2
o)

− 1
4N ∑

p∈BZ
coth βamoω(p)

2

[
2

ω(p) −
X+Y

aω(p) +2a∆mω(p)
] (40)

IV. DISCUSSIONS

The Eq. (35), Eq. (36) and Eq. (40) are the main analytical result of the paper, where the free
energy F , the elementary excitation ω (p) and the sublattices magnetizations are derived for both
magnetically ordered phases AF and AFC. Putting α = 0 we recover the results of Refs. [11–13]
for the unfrustrated fermionized Heisenberg model in a square lattice. Similar to the unfrustrated
case the results obtained by Popov-Fedotov procedure in the one loop approximation for both AF
and AFC phases lead in the limit of zero temperature exactly to the same ones derived for the
next to leading term in the linear spin wave theory [2, 3]. We numerically calculated the ground
state energies and the magnetizations at T = 0 for both phases. At α = 0.5008 the Neel state
energy become larger than the ground state of collinear phase. At α = 0.384, the Neel sublattice
magnetization changes its sign, while at α = 0.495 the collinear magnetization equals to zero. It
means that in a finite region of the frustration parameter a, the ordered phases are destabilized due
to quantum fluctuations. It is essentially the same result of linear spin wave theory [2]. It is not
surprising, because at one loop approximation, taking into account the local constraint does not
improve zero temperature result obtained by treating the constraint in global approximation [11,
13]. At finite temperatures the Popov-Fedotov approach estimate better the thermal fluctuations
[9] and it would change the result considerably. We expect that the region of disordered phase
would be notably enlarged due to fluctuations even at rather low temperatures. In order to get
better result at T = 0, we have to either go over the one loop approximation or to modify the
Popov-Fedotov method [10]. It is left for future.
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