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Abstract. The equivalent between Bose and Fermi ideal gases is usually taken in high temperature limit only. Recently,
there has been considerable interest in surprising thermodynamic “equivalences” between certain ideal Bose and
spineless Fermi gas systems in lower temperature. In this work, we follow that idea to investigate the quasi one-
dimensional system of metallic carbon nanotubes. Due to the linear dispersion law, the non-interacting Bose and
Fermi gases in metallic carbon nanotubes are equivalent. This equivalence could be applied to the gas systems of
exciton photon (Bose particles) and electron hole (Fermi particles) in metallic carbon nanotubes.
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I. INTRODUCTION

We all know that they are quite different the Bose and Fermi gases, and some “equivalences”
between them could be introduced in the presence of certain conditions, including temperature
limitation. This equivalence is usually taken in high temperature limit only. It has been known
that at low temperature, ideal gases have a peculiar dependence on the number of dimension d. For
this reason, the two dimensional (2D) gases may well possess simpler properties than in the one
dimensional (1D) gases [1]. The 2D ideal Bose and Fermi gases have the same specific heat at the
same temperature [2]. Then, it has been shown that there exists a complete equivalence between
the two gases in 2DciteLee. A little bit later, the role played by the spatial dimensionality d is
also elucidated and it turns out that there is nothing fundamentally special about dimensionality
2; if the single-particle energy spectrum operating in the systems is of the form ε ∝ ps, then the
equivalence in question arises when and only when d = s [3].

The thermodynamic “equivalence” between noninteracting Bose and spinless Fermi gases
in two dimensions, and between one dimensional Bose and Fermi systems with linear dispersion,
both in the grand-canonical ensemble is only special cases of a larger class of equivalences of
noninteracting systems having an energy-independent single-particle density of states (DOS). The
equivalence for systems with a constant DOS is a special case of a more general equivalence

c©2014 Vietnam Academy of Science and Technology

http://dx.doi.org/10.15625/0868-3166/24/3S2/5012
mailto:ctanh@iop.vast.ac.vn


THERMODYNAMIC EQUIVALENT BETWEEN NON–INTERACTING BOSE AND FERMI GAS ... 147

between noninteracting Bose and Fermi gases with a discrete ladder-type spectrum in the grand-
canonical ensemble, which reduces to the constant - DOS case when the level-spacing approaches
zero [4].

As we know, metallic carbon nanotubes (CNT) is a quasi-one-dimensional system with zero
band gap and respects linear dispersion law. In this paper, we investigate the equivalence between
Bose and Fermi gases in this case.

II. DENSITY OF STATES DOS OF METALLIC CARBON NANOTUBES

In CNT-like in graphene- the valence and the conduction band cross a the Fermi level.
In the k.p approximation [5] the energy bands of the (n, n) metallic carbon nanotubes are

ε
c,v(n,k) =±γ

√
∆(n)2 + k2, (1)

where ∆(n) = ∆n,∆= 2π/L is the half energy gap, L is circumference of the CNT, γ =
√

3aγ0/2=
h̄vF , vF is the Fermi velocity.

For n = 0: εc,v(0,k) =±γk , and for n = 1: εc,v(1,k) =±γ
√

∆2 + k2.
The gap between conduction (c) and valence (v) bands εgap = 2∆ = 4π/L.

Fig. 1. Energy band structure of metallic carbon nanotubes.

Thus, density of states (DOS) of metallic carbon nanotubes is

g(n) =
1
L

∂N
∂ε

=
1

πγ2
1√

1
γ2 − ∆(n)2

ε2

for n = 0, −∆ < ε < ∆: g(0) = 1
πγ

,
for n = 1, −2∆ < ε <−∆ or 2∆ > ε > ∆: g(1)= 1

πγ2
1√

1
γ2−

∆

ε2

.
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When n = 0, DOS g(0) is a constant value, independent on energy g(0) = Cst, with
Cst = 1

πγ
.

Fig. 2. Density of States (DOS) of metallic carbon nanotubes for n = 0 and n = 1 levels.

III. THERMODYNAMIC EQUIVALENT OF NON-INTERACTING BOSE AND FERMI
GASES

Under low doping regime, particle concentration (electron or hole) is low, the absolute value
of Fermi energy is small in comparing with the gap |εF |<<∆, the Fermi gas can be considered as
non-interacting.

The free energy FF and FB of the Fermi and Bose systems, respectively, are related by

FF(T,V,N)−FB(T,V,N) =
N2

2C
, (2)

where C is a constant that may depend on the system volume V , but is independent of the temper-
ature T and the mean particle number N.

Consider the gas systems of Bose particle and Fermi particle in a metallic carbon nanotube.
Assume that the two system has the same volume V, temperature T and the mean particle number
N with a constant DOS Thermodynamic.

The entropies of the Fermi and Bose systems are identical [4]

SF(T,V,N) = SB(T,V,N); (3)

The chemical potentials are simply shifted by a temperature-independent constant.
The grand-canonical partition function of an arbitrary noninteracting Bose or Fermi system

could be written as [4]

Z = ∏
α

∑
Nα

e−β (εα−µ)Nα , (4)

with α is the labels the quantum states of a single the Bose or the spinless Fermi particle with
spectrums εα , and β ≡ 1

kBT , Nα = 0,1,2 . . . for the bosons and Nα = 0,1 for the fermions.
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The thermodynamic potential Ω≡ F−µN is given by [4]

Ω =− 1
β

lnZ.

The average number of particles is required to be the same for the Bose and Fermi cases, their
chemical potentials µ in Eq (7) are different. The relations between µB,µFand N are determined
by

∑
α

nB(εα −µB)=∑
α

nF(εα −µF)= N,

where nB, nF are the Bose and Fermi distribution functions.
For two systems with a constant DOS, the equivalence of entropies could be directly demon-

strated. The Bose and Fermi entropies are [6]

SB =−CkB

∫
∞

0
dε [nB(ε−µB) ln [nB(ε−µB)]− [1+nB(ε−µB)] ln [1+nB(ε−µB)]]

and

SF =−CkB

∫
∞

0
dε [nF(ε−µF) ln [nF(ε−µF)]+ [1−nF(ε−µF)] ln [1−nF(ε−µF)]] .

Changing the integration variable in the Bose case to ω = eβ (ε−µB)− 1 and in the Fermi case to
ω = eβ (ε−µF ), we have

SB =Ck2
BT
∫

∞

z−1
B −1

dω

[
ln(1+ω)

ω
− lnω

1+ω

]
and

SF =Ck2
BT
∫

∞

z−1
F

dω

[
ln(1+ω)

ω
− lnω

1+ω

]
.

As the average particle numbers are the same, these lower limits coincide and thus the
Fermi and Bose entropies are identical.

We also introduce η as a degree of equivalence. We investigate the variance of η in relation
with circumference L of the CNT.

η =
S(L)

S(Lmin)
=

g0.2∆(L(n))
g0.2∆(Lmin)

, (5)

as ∆ = 2π/L(n), so η ∝ Lmin/L(n). For metallic carbon nanotube, when n = 3, Lmin = L(3).
The degree of equivalence can be treat as below (Fig. 3)
It’s easy to see that η attain its max = 1 when L(n) = Lmin = L(3). η tends to 0 rapidly

when L increases.
So, for the carbon nanotube (3,3), the Bose and Fermi gases systems could have the maxi-

mum equivalence.
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Fig. 3. Dergee of equivalence of metallic carbon nanotubes.

IV. CONCLUSION

We had presented one more interesting example for the equivalence between Bose and
Fermi gases systems. We know that the carbon nanotube could be considered as quasi one-
dimensional system or not depending on its circumference. When increasing the carbon nanotube
circumference, the CNT must be treated in two-dimensional, and has no more the properties of
quasi one-dimensional system. In investigating the degree of equivalence, we showed that the
validity of equivalency decreases rapidly with the increasing of CNT circumference. The equiva-
lence exists only in the limit of k in the quasi one-dimensional system of metallic carbon nanotube.

It should be also noted that the equivalence could be established for the gases in metallic
carbon nanotube only, not for the semi-conductor or kekule structure [7].

At higher doping level, high particle concentration leads to the case of interacting gases.
In the Fermi scheme at very high concentration, a Fermi gas in metallic carbon nanotubes may
condensate to the Luttinger liquid. The question is that in the according Bose scheme the gas could
be faced with Bose-Einstein condensation? And what is link between two types of condensations.
We hope to get the answer in next publications.
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