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Abstract. We shortly review the metric formalism for the f (R) gravity. Based on the metric formalism, we study the
spherically symmetric static empty space solutions with the gravity Lagrangian L=R+λR2. We found the general met-
ric that described the static empty space with the spherically symmetry. Our result is more general than Schwarzschild
solution, specially the predicted metric is perturbed Schwarzschild metric of the Einstein theory.
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I. INTRODUCTION

Early time inflation is a very attractive idea in order to solve many serious problems of
the Hot Big Bang cosmological model originating in the mystery of the initial conditions of our
Universe such as flatness, horizon, monopole problems [1]. The inflation can be created by only
one scalar field. In particular, many simplest models give different predictions about the scalar
perturbation spectrum ns and the ratio r of squared amplitudes of tensor and scalar perturbations.
Thus the predicted results can be distinguished experimentally by CMB observations [2]. On the
contrary, if predictions for (ns,r) coincide with experimental results, it is very difficult to determine
which model is realized in Nature.

We would like to emphasize that the scalar-field models of inflation correspond to a modi-
fication of the energy-momentum tensor in Einstein equations. However there is another approach
to explain the acceleration of the universe. This can be done by modifying gravitational theory
compared to general relativity (GR). In GR, Lagrangian is a linear function of the Ricci scalar R
namely, L = R− 2Λ, with Λ is the cosmological constant. The presence of Λ can gives an ex-
ponential expansion of the universe. However, we can not use this solution for inflation because
there is no connection between the inflationary period and the radiation period. One of the sim-
plest modification to GR is the f (R) gravity in which the Lagrangian density is a function of the
Ricci scalar R. For more details, the reader can see in [3–6].
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In fact, there are two formalisms to derive the equation of motion from the action in f (R)
gravity. The first is the standard metric formalism in which the the equation of motion is derived
by the variation of the action with respect to the metric tensor gµν and the affine connection Γα

µν

depends on gµν . The second is the Palatini formalism in which gµν and Γα
µν are two independent

variables if we take the variation of the action. Two formalisms give different equations of motion
for a non-linear Lagrangian density in R but for GR action these equations of motion are identified
[7].

The simple Lagrangian density contained non-linear R terms is model with f (R)=R+λR2.
This model of inflation was first proposed by Starobinsky in 1980 [8]. This model is well consistent
with the temperature anisotropies observed in CMB and thus it can be a viable alternative to the
scalar- field models of inflation. In this work, we concentrate to study spherically symmetric
solutions based on the gravity model f = R+λR2.

The work is organized as follows. In Section II, we shortly review the method to obtain
the equations of motion f (R) gravity based on the metric formalism. In Section III, we apply the
equation of motion f (R) to find the spherically symmetric solution of R+λR2 gravity.

II. THE METRIC FORMALISM FOR f (R) GRAVITY

The total action for f (R) theory takes the form

Smet =
1

2κ

∫
d4x
√
−g f (R)+SM(gµν ,ψ) (1)

In order to derive the equations of motion, the variation of the action with respect to the metric
tensor gµν and the affine connection Γα

µν depending on gµν are taken. However, the boundary
condition for fixing metric such as δgµν |∂V = 0 is not enough to derive the equation of motion
because the surface terms in the variation of the action (1) do not consist of total derivative of
some quantities. Therefore, we have to add more terms in the action in order to cancel the surface
term. The way comes from the fact that the action includes higher-order derivatives of the metric
and, therefore, it should be possible to fix more degrees of freedom on the boundary than those of
the metric itself. This work was done by Gibbons, Hawking and York, specially the adding term
is given as

SGY H = 2
∮

∂V
d3yε

√
|h|K, where K = ∇µnµ and gµν = hµν + εnµnν . (2)

After taking variation with respect to the metric element and some manipulations and modulo
surface terms, we obtain the equation of motion as follows

f ′RRµν +gµν2 f ′R−∇µ∇ν f ′R−
1
2

f gµν = κTµν , (3)

with Tµν = −2√
−g

δSM
δgµν . The prime denotes the partial derivatives with respect to R, ∇ is the covariant

derivative and �= ∇µ∇µ .
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III. A SPHERICALLY SYMMETRIC SOLUTION OF R+λR2 GRAVITY

Let us take into account the case of spherical-symmetry in f (R) = R+λR2-gravity. First,
applying the Eq.(3) for the case f (R) = R+λR2 we obtain

(1+2λR)Rµν +2λgµν2R−2λ∇µ∇νR− 1
2
(R+λR2)gµν = κTµν (4)

Multiplying both sides of the Eq. (4) with gµν , we get the result

R = 6λ2R−κT, where T = gµνTµν (5)

Inserting the scalar Ricci R from the Eq.(5) into the Eq.(4), we get a result as follows

(1−2λκT )Rµν −
1
6

gµνR = gµν(
1
3

κT − λ

2
κ

2T 2)−2λ∇µ∇ν(κT ) (6)

Because of small λ , we omit terms proportional to λ 2 and multiply both sides of the Eq. (6) with
gµν . The Eq. (7) can be written as follows

R =−κT −6λ2(κT ) (7)

From Eqs. (6), (7), we obtain the result as follows

(1−2λκT )Rµν +
1
6

gµν(κT +6λ2(κT )) = κTµν −gµν(
1
3

κT − λ

2
k2T 2)−2λ∇µ∇ν(κT ).

(8)

Performing multiplication both sides of the equation (8) with (1+2λκT ) and also omit terms
proportional to λ 2, we get

Rµν = k(1+2λκT )T µν− 1
2

gµν(κT +λk2T 2)−2λ∇µ∇ν(κT )−λgµν2(κT ),

Rµ

ν = k(1+2λκT )T µ

ν −
1
2

δ
µ

ν (κT +λk2T 2)−2λ∇
µ

∇ν(κT )−λδ
µ

ν 2(κT ). (9)

We studied spherically symmetric static space. It means that all the components T ν
µ are valid

except T o
o = ρ(r)c2. In this case, we g et T ≡ Tr(T µν) = ρc2. Hence, the Eq.(9) can be written:

R0
0 =

1
2

κT +
3
2

λk2T 2−2λ∇
0
∇0(κT )−λ2(κT ). (10)

Because ∂ (κT )
∂x0 = 0 and λΓσ

µν is very small, we can write the Eq. (10) as follows

R0
0 =

1
2

κc2
ρ(r)+

3
2

λk2c4
ρ

2(r)−λκc2
∆ρ(r), (11)

with ∆ρ(r) = ∂ 2ρ(r)
(∂xi)2 , (i = 1,2,3).

Now, let us calculate the Rµ

ν components based on the metric formalism. If we ignore the
quadratic terms of metric gµν , the Rµ

ν components is written as

Rµ

ν = gµρ(∂ρΓ
ρ

δν
−∂νΓ

ρ

δρ
). (12)

Because of the spherically symmetric, the R0
0 component have a form as follows

R0
0 = g0δ

∂iΓ
i
δ0 = g00

∂iΓ
i
00, (i = 1,2,3) (13)
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For the spherically symmetric static space, we got

Γ
i
00 =−

1
2

gik
∂kg00. (14)

The weakness of the gravitational field is once again expressed as our ability to decompose the
metric into the flat Minkowski metric plus a small perturbation,

gµν = ηµν +hµν , |hµν |<< 1, gµν = η
µν −hµν . (15)

if we ignore the terms δgik ∂ (δg00)
∂xk , we got

Γ
i
00 =

1
2

δ
ik

∂kg00. (16)

Replacing them into Eq. (16), we have

R0
0 =

1
2
4g00. (17)

From the Eq.(11) with Eq. (16), we obtain

4g00(r) = κc2
ρ(r)+3λk2c4

ρ
2(r)−2λκc24ρ(r). (18)

We would like to emphasize that g00 = 1+h(r) and h(r) = 0 if r→ ∞. In this limit, the Eq. (18)
can be written as follows

4h(r) =−4π f (r) (19)

with f (r) =− 1
4π
[κc2ρ(r)+3λk2c4ρ2(r)−2λκc24ρ(r)].

Because of the boundary condition h(r) = 0 at r→ ∞, the solution of the Eq.(19) can be
written as follows

h(r) =
∫ f (r′)√

(~r−~r′)2
dr′, (20)

⇒ h(r) = −κc2

4π

∫
ρ(r′)dr′√

r2 + r′2−2~r~r′
− 3λk2c4

4π

∫
ρ2(r′)dr′√

r2 + r′2−2~r~r′

+
2λk2c2

4π

∫ 4ρ(r2)d~r′√
r2 + r′2−2~r~r′

= I1 + I2 + I3. (21)

In order to calculate the integrals, we use spherical coordinates, namely

d~r′ = r′2 sinθdr′dθdϕ, ∆ρ(r′) =
1

r′2
∂

∂ r′
(r′

ρ(r′)
∂ r′

), ~r~r′ = rr′ cosθ . (22)

We would like to denote that ρ(r′) = 0 if r′ > ro, ro is the radius of the object. Hence the integral
I1, I2, I3 can be calculated.The final result is given as follows

h(r) = −κc2m
4π

1
r
− 9λk2c4m2

16π2r3
0

1
r
+

2λk2c2r2
0

r
∂ρ(r′)

∂ r′
|r′=r0

g00(r) = 1+h(r) = 1− κc2m
4π

1
r
− 9λk2c4m2

16π2r3
0

1
r
+

2λk2c2r2
0

r
∂ρ(r′)

∂ r′
|r′=r0 . (23)
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Because the density of the material is uniform, ∂ρ(r′)
∂ r′ = 0 and out side of gravity object, the energy

of momentum tensor equals zero. Hence, the function g00(r) can be written as follows

g00(r) = 1− κc2m
4π

1
r
− 9λk2c4m2

16π2r3
0

1
r
. (24)

On the other hand the best way that we can do for a general metric in a spherically sym-
metric space time is writing the metric elements in form

gµν =−diag(−c2eβ ,eα ,r2,r2 sin2
θ) (25)

. The next step is to actually solve gravity equations, which will allow us to determine explicitly
the functions α(t,r) and β (t,r). For space outside the gravity object, r > ro, the energy momentum
tensor equals zero. Hence the Eqs. (8) and (7) lead to

Rµ

ν = 0, R = 0. (26)

So, we have Rµ

ν − 1
2 R = 0. This is Einstein’s equations for the spherically symmetric vacuum. The

exactly solutions are given as

g00 = 1−C
r
, g11 =−

1
1− C

r

, g22 =−r2, g33 =−r2 sin2
θ . (27)

Because g00(r) = 1− κc2m
4π

1
r −

9λk2c4m2

16π2r3
0

1
r then g11 =

−1
1− κc2m

4π

1
r−

9λk2c4m2

16π2r3
0

1
r

. Our final result is the cele-

brated Schwarzschild metric,

ds2 = (1− κc2m
4π

1
r
− 9λk2c4m2

16π2r3
0

1
r
)dt2 +

−1

1− κc2m
4π

1
r −

9λk2c4m2

16π2r3
0

1
r

dr2− r2dθ
2− r2 sin2

θdϕ
2.

(28)

Let us remain that the Schwarzschild metric is an exact spherically symmetric vacuum solution to
Einstein equations. The solution given in (28) is general solution which is perturbed Schwarzschild
metric. This solution can be recovered the Minkowski space as the same as that of the spherically
symmetric vacuum solution to Einstein equations. Especially, in the limit M → 0 and r → ∞

the solution given in (28) recovers the Minkowski space. On the other hand, the Schwarzchild
geometry of the Einstein equation contains the singularities, namely the metric coefficients become
infinite at r = 0 and r = κc2m

4π
. In the case of the spherically symmetry static solution to f (R)

equation with f (R) = R+ λR2, the metric coefficients become infinite at r = 0 and r = κc2m
4π

+
9λκ2c4m2

16π2r3
0
.

In conclusion, based on the context of the metric formalism of the f (R) -gravity, the La-
grangian L = R+λR2 has been developed to study dynamics of spherically symmetric metrics.
We found the general metric that described the static empty space with the spherically symme-
try. The singularities happened at r = 0 and r = κc2m

4π
+ 9λκ2c4m2

16π2r3
0
. These singularities are different

from those of the Schwarzchild metric. The metric formalism reveals a useful approach to select
consistent f (R)-models and to find out exact spherically symmetric vacuum solution.
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