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Abstract. We calculate the mass of the lightest neutral CP-even Higgs in the frame work of the supersymmetric reduced
minimal 3-3-1 model (SUSYRM331) at one-loop level. Like MSSM, at tree level this value of mass is smaller than that
of mZ = 92 GeV, inconsistent with value of 125 GeV measured by recent experiment. In this work we prove that the
mass of the lightest neutral CP-even Higgs will get the consistent value if loop corrections are included.
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I. INTRODUCTION

The detection of the neutral CP-even Higgs with mass around 125 GeV by experiment at
LHC [1, 2] has again confirmed the success of the Standard Model (SM). Beside that many other
well-known results of experiments suggest the necessary to study new models beyond the SM, for
example the non-zero mass and the oscillation of neutrinos, the existence of dark matter in the uni-
verse, the hierachy in mass spectrum of the SM, the question of the existence of three fermion fam-
ilies, .... Among the well-known models beyond the SM, the supersymmetric minimal reduced 3-
3-1 model (SUSYRM331) was recently built with many interesting properties. It is the supersym-
metric version of the reduced minimal 3-3-1 model (RM331) [3] which contains the simplest Higgs
content comparing with well-known 3-3-1 models. It is noted that the SUSYRM331 not only keeps
many interesting property of the RM331 model but also solves the dark matter problem unsolved
by normal 3-3-1 models. In the Higgs spectrum of the SUSYRM331, it was shown in [5, 6] that
at the tree level the lightest neutral CP-even Higgs has a mass smaller than mass of the Z boson.
The authors in [6] indicated a analytic formula of this mass as m2

H0 = m2
Z cos2 2γ +O(ε)×m2

W ,
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where γ is defined as the ratio of the vacuum expection values of two neutral Higgs ρ0 and ρ0′, i.e
tanγ = v/v′. The quantity ε = m2

W/m2
V � 1 so mH0 ' mZ|cos2γ| < mZ = 92 GeV. This value is

inconsistent with recent experiments which have detected only one Higgs with mass of 125 GeV.
So it is necessary to calculate this lightest Higgs mass including loop-corrections and consider
whether the full mass can reach the experimental value. At the tree level, Ref. [3] has shown the
numerical result being consistent with that shown in [6]. In addition they also investigated numer-
ically the lightest mass including one-loop correction of the top and stop quark and showed that
the mass values can reach the value of 125 GeV. It is needed to recall that because top quark is the
heaviest quark in the Minimal Supersymmetric Standard Model (MSSM), the correction relating
with top and stop quark in this model is the largest contribution to the mass of the lightest neu-
tral CP-even Higgs. The difference may happen in case of the SUSYRM331 because it contains
many other heavy quarks and their superpartners, namely the exotic quarks. This problem was
not considered in the [3]. Hence, our work will investigate more details one-loop contributions of
top quark, exotic quarks and their superpartners to the mass of the lightest neutral CP-even Higgs
in the SUSYRM331. In particularly, we will use the method given from [8] to estimate the mass
of the lightest neutral CP-even Higgs at the tree as well as one-loop level including only heavy
quarks and their superpartners. The mass of this Higgs at two levels will be presented in sections
II and III, respectively. The summarization of our work is in the section IV.

II. MASS OF NETRAL HIGGS AT TREE LEVEL

The Higgs sector in this model is given as follows [4, 5], in particularly

ρ =




ρ+

ρ0

ρ++


∼ (1,3,+1), χ̂ =




χ−

χ−−

χ0


∼ (1,3,−1), (1)

and

ρ
′ =




ρ ′−

ρ ′0

ρ ′−−


∼ (1,3∗,−1), χ

′ =




χ ′+

χ ′++

χ ′0


∼ (1,3∗,+1). (2)

All neutral Higgs components having non-zero vacuum expectations (VEV) are defined as ρ0 =
v+Hρ+iFρ√

2
, ρ ′0 =

v′+H
ρ ′+iF

ρ ′√
2

, χ =
w+Hχ+Fχ√

2
and χ ′ =

w′+H
χ ′+F

χ ′√
2

, where v,v′,w and w′ are respective
VEVs of these Higgses. We will use the following notations given in [4, 6]: tγ ≡ tanγ = v/v′,
tβ ≡ tanβ = w/w′, m2

V = g2

4

(
w2 +w′2

)
, m2

W = g2

4

(
v2 + v′2

)
= 80.42[GeV2]. Here mV and mW are

masses of the heavy V and W gauge bosons respectively. For the simple in estimating value of the
Lightest Neutral CP-Even Higgs (LNEH), based on the limit case supposed in [8] for MSSM we
consider the case of the SUSYRM331 with some parameters are fixed as follows: β , γ → π/2.
As a consequence we have v′, w′→ 0 compared with corresponding values of v and w. Therefore
it can be supposed that ρ ′, χ ′ → 0 and mW = gv/2, mV = gw/2. Now we can ignore all terms
relating with χ ′ and ρ ′ in the superpotential given in [3, 6]. In addition we define some new
parameters such as

m2
1 =

1
4

µ
2
χ +m2

χ , m2
2 =

1
4

µ
2
ρ +m2

ρ ,
Hχ +w√

2
→ φ1 and

Hρ + v√
2
→ φ2. (3)
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With the limit supposed above, at the tree level the superpotential relating with neutral CP-even
Higgses is

VSUSYRM331→V0 = m2
1φ

2
1 +m2

2φ
2
2 +

g2
(
t2 +2

)

12
[
φ

4
1 −2kφ

2
1 φ

2
2 +φ

4
2
]
, (4)

where t2 ≡ g′2

g2 =
6s2

W
1−4s2

W
and k = (t2 +1)/(t2 +2). The minimal condition of the V0 corresponds to

two below equations

∂V0

∂φ1

∣∣∣∣
φ1=w/

√
2, φ2=v/

√
2

= 0→ m2
1 =−

t2 +2
3

(
m2

V − km2
W
)
,

∂V0

∂φ2

∣∣∣∣
φ1=w/

√
2, φ2=v/

√
2

= 0→ m2
2 =

t2 +2
3

(
km2

V −m2
W
)
. (5)

Because masses of these two Higgses relate with ∂ 2V0
∂φiφ j

(i, j = 1,2), we have the mass term of the
Higgses as follows

2(t2 +3)m2
V

3
(

φ1, φ2
)( 1 −k

√
ε

−k
√

ε ε

)(
φ1
φ2

)
, (6)

where ε = m2
W/m2

V � 1. Squared masses of the physical neutral Higgses are eigenvalues of matrix
in (6). They are determined as

m2
h,H =

(
t2 +2

)
m2

V

3

[
1+ ε∓

√
1+ ε (4k2−2)+ ε2

]
. (7)

Because ε � 1 so we can obtain the approximation for the lightest neutral Higgs mass as m2
h '

m2
W/c2

W +O(ε)×m2
W or m2

h 'm2
Z = 92 GeV. This result is consistent with conclusions of previous

publications [3, 6]. In the next section we will calculate mass of this Higgs including one-loop
correction from heavy quarks and their superpartners.

III. CORRECTION AT ONE LOOP LEVEL

To calculate the loop correction of Higgs masses we need to find out the Yukawa inter-
actions of quarks as well as the soft terms relating with their superpartners. For Yukawa terms,
concentrating only on heavy quarks, we use the approach given in [3], namely the term mainly
creating masses of top and exotic quarks can be supposed simply as

L q
mass = λ

J
ii QiLχJc

iL +λ
′′
t Q3Lρtc

L +
ku1a

Λ
εmnp (Q1Lρmχp)uc

a, (8)

where a = 1,2,3 and i = 2,3 being the family indices. Noting that the lagrangian (8) contains only
terms relating with Higgses χ and ρ because of our above assumption that the mass of the lightest
Higgs are only contributed from these Higgses. In addition, it can be proved that the last term in
(8) must be much smaller than other terms in order to avoid large mixing among flavor normal
quarks. Therefore this term can be ignored when we consider only heavy quarks. So only two
terms generating masses for top and J2,3 quarks are

m2
J2,3

= λ
J
22,33φ

2
1 , m2

t = λ
′′2
t φ

2
2 . (9)
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For the squarks, apart from Yukawa interactions, their masses also come from the soft and D terms.
We can ignore the D term in this case and assume that masses are given in the simplest case as
follows

m2
J̃2,3
≡ m2

J̃2,3L = m2
J̃2,3R = λ

J
22,33φ

2
1 + m̃2

J , m2
t̃ = m2

t̃L = m2
t̃R = λ

′′2
t φ

2
2 + m̃2

t . (10)

From this we have

∂ (m2
t )

∂ (φ1)
=

∂ (m2
t̃ )

∂ (φ1)
= 0,

∂ (m2
t )

∂ (φ2)
=

∂ (m2
t̃ )

∂ (φ2)
= 2λ

′′2
φ2 (11)

and
∂ (m2

J2,3
)

∂ (φ1)
=

∂ (m2
J̃2,3

)

∂ (φ1)
= 2

(
λ

J
22,33

)2
φ1,

∂ (m2
J2,3

)

∂ (φ2)
=

∂ (m2
J̃2,3

)

∂ (φ2)
= 0 (12)

which will be very useful when we calculate the squared Higgs mass matrix from the potential
included the one-loop correction, namely

V1(Q) =V0(Q)+∆V1(Q), (13)

where

∆V1(Q) =
1

64π2 Str
[
M 4

(
ln

M 2

Q2 − c
)]

. (14)

Here Q is some renomalization scale and M 2 is the field-dependent generalized squared mass
matrix and the supertrace is defined as

Str f (M 2) = ∑
i
(−1)2Ji(2Ji +1) f (m2

i ) (15)

with Ji is the spin of the field having mass mi. We consider the contribution to ∆V1 from only top,
J2,3 quarks and their superpartners, namely

∆V1(Q) =
3

16π2 ×
[

3

∑
i=2

2m4
Ji

ln

(
m2

J̃i

m2
Ji

)
+
(

m4
J̃i
−m4

Ji

)(
ln

m4
J̃i

Q2 − c

)

+ 2m4
t ln
(

m2
t̃

m2
t

)
+
(
m4

t̃ −m4
t
)(

ln
m4

t̃
Q2 − c

)]
. (16)

The minimal condition of this potential corresponds to series of two below equations,

∂V1

∂φ1

∣∣∣∣
φ1=w/

√
2, φ2=v/

√
2
= 0,

∂V1

∂φ2

∣∣∣∣
φ1=w/

√
2, φ2=v/

√
2
= 0, (17)

where

∂V1

∂φ1
=

∂V0

∂φ1
+

∂∆V1

∂φ1
,

∂V1

∂φ2
=

∂V0

∂φ2
+

∂∆V1

∂φ2
. (18)
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Similarly to the case of MSSM considered in [8], we can choose the renomalization scale Q so
that ∂V0

∂φ2
= 0 and ∂∆V1

∂φ2
= 0. As the result we obtain value of m2

2 the same as that given in (5) while

m2
1 is different. In addition from the condition ∂∆V1

∂φ2
= 0 we have

(
m2

t̃ −m2
t
)(

ln
m2

t̃
Q
− c
)
=−

(
m2

t̃ −m2
t
)
−2m2

t ln
m2

t̃

m2
t
. (19)

This leads to the consequence that

∂ 2V1

∂φ 2
2
=

∂ 2V0

∂φ 2
2
+

3g2

8π2
m4

t

m2
W

ln
(

m4
t̃

m4
t

)
. (20)

One-loop correction to lightest CP-even neutral Higgs in the SUSYRM331 5

Similarly to the case of MSSM considered in [8], we can choose the renomalization scale

Q so that ∂V0
∂φ2

= 0 and ∂∆V1
∂φ2

= 0. As the result we obtain value of m2
2 the same as that

given in (5) while m2
1 is different. In addition from the condition ∂∆V1

∂φ2
= 0 we have

(
m2

t̃
−m2

t

)
(
ln

m2
t̃

Q
− c

)
= −

(
m2

t̃
−m2

t

)
− 2m2

t ln
m2

t̃

m2
t

. (19)

This leads to the consequence that

∂2V1

∂φ2
2

=
∂2V0

∂φ2
2

+
3g2

8π2

m4
t

m2
W

ln

(
m4

t̃

m4
t

)
. (20)

We will prove that the second term in (20) is the main contribution from one-loop correc-

tion to the lightest neutral CP-even Higgs mass. Firstly, we can prove that ∂2∆V1
∂φ1∂φ2

= 0 so
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Fig. 1. Mass of the lightest CP-even neutral Higgs including one-loop correction
of heavy quarks and squarks. The black curves present the mass in the framework
of the SUSYRM331 as function of stop quark. Two dashed lines correspond to
125 and 126 GeV.

∂2V1
∂φ1∂φ2

= ∂2V0
∂φ1∂φ2

. Secondly, the analytic formula of ∂2∆V1

∂φ2
1

can be found by inserting Q in

(19) to the first equation of (18) to determine m2
2 according to masses of the quarks and

squarks. Value of ∂2∆V1

∂φ2
1

is different from that of ∂2∆V0

∂φ2
1

but based on (6) the mass term of

Higgses are written as follows

2(t2 + 3)m2
V

3

(
φ1, φ2

)( 1 + a −k
√
ε

−k
√
ε ε+ b

)(
φ1

φ2

)
, (21)

Fig. 1. Mass of the lightest CP-even neutral Higgs including one-loop correction of
heavy quarks and squarks. The black curves present the mass in the framework of the
SUSYRM331 as function of stop quark. Two dashed lines correspond to 125 and 126
GeV.

We will prove that the second term in (20) is the main contribution from one-loop correction to
the lightest neutral CP-even Higgs mass. Firstly, we can prove that ∂ 2∆V1

∂φ1∂φ2
= 0 so ∂ 2V1

∂φ1∂φ2
= ∂ 2V0

∂φ1∂φ2
.

Secondly, the analytic formula of ∂ 2∆V1
∂φ 2

1
can be found by inserting Q in (19) into the first equation

of (18) to determine m2
2 according to masses of the quarks and squarks. Value of ∂ 2∆V1

∂φ 2
1

is different

from that of ∂ 2∆V0
∂φ 2

1
but based on (6) the mass term of Higgses are written as follows

2(t2 +3)m2
V

3
(

φ1, φ2
)( 1+a −k

√
ε

−k
√

ε ε +b

)(
φ1
φ2

)
, (21)
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where
2(t2 +3)m2

V

3
×a =

∂ 2∆V1

∂φ 2
1

∣∣∣∣
φ1=w/

√
2, φ2=v/

√
2
,

2(t2 +3)m2
V

3
×b =

3g2

16π2
m4

t

m2
W

ln
(

m4
t̃

m4
t

)
. (22)

Now mass of the lightest Higgs is

m2
h =

(t2 +3)m2
V

3

[
(1+a)+(ε +b)−

√
(1+a− ε−b)2 +4k2ε

]
. (23)

In case of a, b� 1 we have m2
h 'm2

Z +
3g2

16π2
m4

t
m2

W
ln
(

m4
t̃

m4
t

)
which is the same as shown in MSSM [8].

With mZ = 92 GeV, mt = 175 GeV and mW = 80.4 GeV , the values of mh as a function of mt̃
is illustrated in the figure 1. It is easy to see that the lightest Higgs mass can reach the value of
125-126 GeV measured by recent experiments at LHC. So the SUSYRM331 is still not excluded.

IV. CONCLUSION

In this paper we have established formula to calculate the mass of the lightest neutral CP-
even Higgs mass in the frame work of the SUSYRM331 at one-loop level. Firstly, at tree level with
large values of tanβ and tanγ we have proved that this mass is equal to mass of the Z boson. At
one-loop level where loop corrections are much small than SU(3)L scale, we obtain the formula

of this lightest mass as m2
h ' m2

Z + 3g2

16π2
m4

t
m2

W
ln
(

m4
t̃

m4
t

)
. This result shows that the SUSYRM331

contains a lightest neutral CP-even Higgs with mass being consistent with experiments if mt̃ is
large enough. Our work only considers the largest one-loop contributions from heavy quarks and
their superpartners. A more detail investigation including contribution from other quarks as well
as mixing of left- and right-squarks should be investigated in order to constrain the parameter
space of the model.
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