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Abstract. The diffusion in one-dimensional disordered lattice with Gaussian distribution of site and transition ener-
gies has been studied by mean of kinetic Monte-Carlo simulation. We focus on investigating the influence of energetic
disorders and diffusive particle density on diffusivity. In single-particle case, we used both analytical method and ki-
netic Monte-Carlo simulation to calculate the quantities that relate to diffusive behavior in disordered systems such as
the mean time between two consecutive jumps, correlation factor and diffusion coefficient. The calculation shows a
good agreement between analytical and simulation results for all disordered lattice types. In many-particle case, the
blocking effect results in decreasing correlation factor F and average time τjump between two consecutive jumps. With
increasing the number of particles, the diffusion coefficient DM decreases for site-energy and transition-energy disor-
dered lattices due to the F-effect affects stronger than τ -effect. Furthermore, the blocking effect almost is temperature
independent for both lattices.
Keywords: diffusion, disordered lattices, Gaussian distribution, blocking effect, energetic disorders.

I. INTRODUCTION

The diffusion in disordered lattices exhibits a variety of interesting phenomena, such as a
strong reduction of the asymptotic diffusion coefficient, anomalous frequency dependence of the
conductivity, dispersive transport, etc [1]. It also received wide attention from researchers in the
fields related to the fuel cells, membrane technology, nano devices. . . [2-11]. Recently, a signif-
icant amount of experimental data pertaining to real materials is available. Experimental data,
together with simulation results, will allow us to get insight into the diffusivity in strongly disor-
dered systems [12]. However, the number of theoretical works relating to diffusion in disordered
lattices is very limited, particularly in higher-dimensional disordered lattices. Moreover, most of
works uses very simple models (such as models of disordered lattices with two-level distribution
of site and transition (saddle point) energies) [6-12].

Up to now, the exact determination of diffusion coefficient, as well as the diffusive behavior
at short time interval for disordered materials is still unclear. Diffusion in materials was influenced
c©2014 Vietnam Academy of Science and Technology



86 INFLUENCE OF BLOCKING EFFECT AND ENERGETIC DISORDER ON DIFFUSION ...

by both geometrical and energetic disorder but mainly by the energetic disorder. Hence, to clarify
the diffusive behavior of disordered systems, the disordered lattice is employed where the particle
jumps between sites of regular lattice whose site and barrier energy are randomly distributed.

In this paper we focus on studying the influence of energetic disorder on the diffusive be-
havior. The simulation has been conducted for a chain consisting of 4000 sites with periodic
boundary conditions. Three lattice types are considered including: the first one is the site dis-
ordered lattice (SDL) where the transition energies are constant but site energies are adopted in
accordance to Gaussian distribution [13]; the second one is transition disordered lattice (TDL)
where the transition energies are adopted in accordance to Gaussian distribution and site ener-
gies are kept constant; and the third one is mixed disordered lattice (MDL) where both site and
transition energies are adopted in accordance to Gaussian distribution.

II. CALCULATION METHOD

Let us consider the hopping of particles between sites in one-dimensional disordered lat-
tice. Each ith site is characterized by its energy Ei. The hopping of particle from the ith site to the
nearest neighbor ones i−1 and i+1 is described by the transition energyEi,i−1 andEi,i+1, respec-
tively. The transition and site energies are assigned random values obeying Gaussian distribution
as follows:
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In order to simply the problem, we use the standard Gaussian distribution with the param-
eter µ = 0;σ = 1 and it can be expressed as follows:
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Here E ≡ Ex (with the index x is s or t) is the site energy Es or transition energy Et,
respectively. Once the particle presents at site i, its probability to hop into neighboring site i±1 is
given by

pi,i+1 =
exp(−Ei,i±1β)

exp(−Ei,i+1β) + exp(−Ei,i−1β)
(3)

The particle’s jump from one site to another is a Poisson process with average delay time is

τi =
2τ0 exp(−Eiβ)

exp(−Ei,i+1β) + exp(−Ei,i−1β)
(4)

where τ0 is frequency (period); β = 1/kBT ; kB is Boltzmann constant, and T is temperature. In
fact, the time τ i is the mean residence time of particle on site i.

The Monte-Carlo (MC) method with the Metropolis algorithm and a lot of other algorithms
built on it are at the heart of many, if not most, of the simulations investigating properties of
physical systems at stationary states.

In this paper, we applied the Monte-Carlo simulation called ”residence time” method or
kinetic Monte-Carlo (KMC) method. The KMC method developed on base of a different kind of
Monte Carlo algorithm for evolving systems dynamically from state to state and in principle, it can
give the exact dynamical evolution of a system. More detail about KMC can be found elsewhere
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in [14, 15]. In this method each MC step leads to hopping of particle, but random sampling
determines the time that particle spent on site i where it visits. After construction of the lattice,
the sites are filled with Np particles by randomly choosing their coordinates and avoiding double
occupancy. The algorithm consists of five main steps are:

1) determine the residence time of particle on the current site iby

τij = −τi lnR, (5)

where R is random number in range [0, 1].
Initially, a list of time τjumpj , j =1, 2, ...Np is determined by equation (5)

τjumpj = τij = −τi lnR:
2) select a particle j based on the list τjumpj . The particle performing next hop is one

that has the earliest time from this list (the smallest value from the list of τjumpj);
3) select the hop direction of the particle j (to left or right site) according to probability

pi,i±1 (see Eq. (3));
3) move the particle j into the corresponding neighboring site if this site is non-occupied.

Otherwise the particle remains at current site i;
5) the time τjumpj is added to

τjumpj = τjumpj − τi lnR. (6)

The total duration of the trajectory is given by tn =
∑
τij . The mean time between two

consecutive jumps is τ jumpy =< tn > /n. During simulation the mean square displacement
< x2n > is obtained by averaging over many runs. Correlation factor Fy is the slopes of the linear
dependence < x2n > vs. n. Once given a time < tn > that is the average duration of n MC steps,
the diffusion coefficient can be calculated by

Dy =
a2

2

Fy

τjumpy
· (7)

Here a is distance between the nearest neighboring sites. The letter y may be S,M or
Ccorresponding to single-particle, many-particle and crystal case, respectively. The crystal case
corresponds to the lattice where site and transition energies are constant.

The simulation has conducted for two types of one-dimensional lattices consisting of 4000
sites with periodic boundary conditions. The values of parameters used for calculation are the
same for all simulations and given as follow: the temperature, ξ = σβ; ξ is dimensionless and
varies in the range from 0.2 to 1.2. The average number of hops per particle is n= 1000; the
number of particles is varies from 1 to 120 particles. In order to obtain a good statistics, all
quantities is obtained by averaging over 106 MC samplings.

III. ANALYTIC EXPRESSION FOR THE DIFFUSION QUANTITIES IN THE CASE OF
SINGLE-PARTICLE

At first we introduce some necessary parameters for further discussion. The time for per-
forming n jump steps is denoted as tn and the mean time between two consecutive jumps is
τ jump =< tn > /n. Here < tn > is the average time tn over many simulations.

In the case of SDL system: < x2n >= na2. Meanwhile, in the case of TD system, due to
forward and backward jumps< x2n >= Fna2 with F < 1. The correlation factor F which has very
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Fig. 1. Distribution of site and transition energy in (a) SDL, (b) TDL and (c) MDL

small value at low temperature. Consider the single-particle case when particle walks randomly
for a long time tn. In this case, the time that particle spends at each ith site can be approximated
by

ti = tn
exp(−Eiβ)

N∑
j
exp(−Ejβ)

(8)

Here N is number of sites in the lattice. The number of particles visiting to ith site is defined by

ni =
ti
τi

= tn
exp(Ei,i+1β) + exp(−Ei,i−1β)

2τ0
N∑
j
exp(−Ejβ)

(9)

Therefore, the average time between two consecutive jumps in the limit of long time tn can be
calculated as follow:

τjumpy =
tn
n

=
tn

N∑
i
ni

=

2τ0
N∑
i
exp(−Eiβ)

N∑
i
exp(−Ei,i+1β) + exp(−Ei,i−1β)

(10)

with the site and transition energies are adopted in accordance to Gaussian distribution (see Eq. (2))
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III.1. For the crystal case
The site and transition energies are constant (Ei= 0; Ei,i±1 = 0). Therefore, from the Eq.

(10), it is deduced that:

τjumpC = τ0 (11)

τjumpy

τjumpC
=

2
N∑
i
exp(−Eiβ)

N∑
i
exp(−Ei,i+1β) + exp(−Ei,i−1β)

(12)

III.2. For site disordered lattice
The site energies Ei are adopted in accordance to Gaussian distribution (see Eq. 2); and

transition energies are constant Ei,i±1 = 0. From Eq. (12) one obtains:

τjumpSD

τjumpC
=

N∑
i

exp(−Eiβ) (13)

Because the factor FS is independent of the distribution of site energies, FSD is always
equal to 1.0. Therefore for SD, the diffusion coefficient can be determined by equations (6) and
(13):

DSD

DC
=

τjumpC

τjumpSD
=

1
N∑
i
exp(−Eiβ)

(14)

III.3. For transition disordered lattice
The transition energiesEi,i±1 are adopted in accordance to Gaussian distribution (see Eq.2);

and site energies are constant Ei = 0. From Eq. (12) one obtains:

τjumpTD

τjumpC
=

2
N∑
i
exp(−Ei,i+1β) + exp(−Ei,i−1β)

(15)

As will be shown by simulation result in next section, the diffusion coefficient of TDL is
close to the one of SDL if both lattices have the same temperature and energetic distribution. So,
the diffusion coefficient of TDL is:

DTD

DC
=

1
N∑
i
exp(−Ei,i+1β)

(16)

From Eqs. (6) and (16) one obtains:

FTD =
DTD

DC

τjumpTD

τjumpC
=

2
N∑
i
exp(−Ei,i+1β)

[
N∑
i
exp(−Ei,i+1β) +

N∑
i
exp(−Ei,i−1β)

] (17)
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III.4. For mixed disordered lattice
Both of the site and transition energies are randomly adopted in accordance to Gaussian

distribution (see Eq.2). From Eq. (12) one obtains:

τjumpMD

τjumpC
=

2
N∑
i
exp(−Eiβ)

N∑
i
exp(−Ei,i+1β) + exp(−Ei,i−1β)

(18)

Because the factor FS is independent of the distribution of site energies, FSD is always
equal to 1.0. Therefore for MDL, FMD = FTD can be calculated according to Eq. (17).

The diffusion coefficient can be determined via the Eqs. (6), (17) and (18):

DMD

DC
= FMD

τjumpC

τjumpMD
(19)

Distribution of site and transition energery in (a) SDL, (b) TDL and (c) MDL is presented
in Fig. 1.

IV. RESULT AND DISCUSSION

IV.1. The single-particle case
We have calculated the temperature dependence of the diffusion quantities of interest. The

Monte-Carlo result is presented in figures 2, 3, 4 and 5. Here, the diffusion coefficient and correla-
tion factor are determined by the slopes of the linear dependence of < x2n > versus < tn > and n,
respectively. In the case of the nonlinear dependence then nonlinear dependence will be divided
into many linear sub-ranges and one can determined the slopes in the linear sub-ranges.

Fig. 2 shows the ratio τjumpS/τjumpCas function of temperature for SDL and TDL. It can be
seen that the time τjumpS/τjumpC is well approximated by Eqs. (13) and (15). For SDL, the time
τjumpS/τjumpC increases as temperature decreases (i.e. as temperature ξ increases; ξ ∼ 1/T) and
the lower temperature decreases, the stronger τjumpS /τjumpC increases. Conversely for TDL, the
time τjumpS/τjumpCdecreases as temperature decreases. Furthermore, the time τjumpS/τjumpCof
SDL is significantly larger than the one of TDL indicating the specific property of trapping model
in comparison to hopping one.

Fig. 3 shows the temperature dependence of correlation factor F that is calculated by both
simulation and analytic methods (see Eq.(17)). For SDL, It can be seen that the correlation factor
FS does not depend on temperature and is approximately equal to 1. This is due to the factor
F is independent with the distribution of site energies. Conversely for TDL, the correlation fac-
tor significantly decreases as temperature decreases. The temperature dependence of diffusion
coefficient for SDL and TDL systems is presented in figure 4. As expected, the ratio DS/DC of

TDL is very close to the one of SDL if they have the same energetic distribution (see Eq. (2))
and temperature condition. The ratio DS/DC decreases as temperature decreases. From figure
4, we can see that it is in good agreement between simulation and analytical results for SDL and
TDL. In order to check the validity of Eqs (17), (18) and (19), several simulations have been done
for MDL. The result is presented in figure 5. One time again, it is in good agreement between
simulation and calculation result.
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Fig. 2. The dependence of τjump/τjumpC on temperature for SDL, TDL model.

Fig. 3. The dependence of correlation factor F on
temperature for (solid circles) SD, (blank trian-
gles) TD lattices.

Fig. 4. The temperature dependence of D/DC for
(solid circles) SDL and (blank squares) TDL.

IV.2. Many-particle case
For many-particle case, the blocking effect plays an important role in diffusion process.

Unlike single-particle case, some particle’s jumps in many-particle case are obstructed by other
particles. In other word, the diffusion (displacement) of particle is blocked due to that a number of
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sites are occupied. Obviously, the number of such jumps (unsuccessful hop) nuns increases with
the number of particles. Consequently, the mean square displacement and correlation factor

Fig. 5. The dependence of τjump/τjumpC , correlation factor F and D/DC on temperature
for MDL system.

FM decreased with increasing number of particles. Table 1 presents the diffusion quantities
for many-particle case at temperature ξ=1.2. The number of unsuccessful hops nunsrelates to the
correlation factor FM . As the number of particles increases, nuns/nincreases about 14.25 times
for SDL and 13.19 times for TDL systems, meanwhile the factor FMdecreases for both SDL
(1.94 times) and TDL (1.47 times) systems. This effect is denoted to F -effect. This effect can be
explained as follows: since the particle’s hop is unsuccessful, the probability that the particle’s hop
in opposite direction becomes bigger than one in original direction. This gives rise to increasing
the number of forward-backward hops and results in the decrease of correlation factor FM and final
consequence is the decrease of diffusion coefficient DM . For SDL, the mean particle’s residence
time for the site with low energy is larger than the one for site with high energy. Therefore, the
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Fig. 6. The dependence of correlation factor FM on temperature for SD (left) and TD
(right) lattices

Fig. 7. The dependence of ln(DM /DC) on temperature for (left) SD and (right) TD lattices

occupied site with low energy prevents other particles from jumping into it for a time interval
that is longer in comparison to the occupied site with higher energy. As a result, due to blocking,
the average number of visits of particle to the site with low energy decreases with the density of
particles. This leads to decreasing mean time between two consecutive hops τ jumpM .This effect
is called τ -effect and gives rise to increasing DM . For TDL, the particle spent in average the same
time for each site. However, it prefers to surmount the saddle points with low transition energy.
Hence the particle’s jumps over the saddle points with low transition energy are more frequent
than the ones with high transition energy. As a result, due to blocking, the number of jumps over
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saddle point with low transition energy decreases when the number of particles is large enough.
This results in increasing time τ jumpM .

Table 1. The diffusion quantities for many-particles at ξ = 1.2 and n = 1000. Here
n is average number of hops per particle; nhigh, nlow are the average number of visit
to site with high and low energy, respectively; nhigh,+nlow = n; nuns is number of
unsuccessful jumps.

Lattice N nhigh nlow nuns FM τ jumpM /τ jumpC DM /DC

1 699.43 301.57 0 1.001 2.043 0.488
10 698.68 301.42 0.56 0.939 2.017 0.462
20 699.67 300.38 1.18 0.879 2.003 0.435

SD 40 702.12 297.90 2.47 0.772 1.978 0.387
60 704.31 295.71 3.80 0.681 1.954 0.346
80 706.46 293.56 5.15 0.604 1.932 0.311
120 710.83 289.18 7.98 0.483 1.889 0.254
1 - - 0 0.260 0.499 0.536
10 - - 2.26 0.254 0.490 0.520
20 - - 4.72 0.245 0.488 0.503

TD 40 - - 9.75 0.229 0.488 0.470
60 - - 14.75 0.215 0.488 0.440
80 - - 19.82 0.201 0.489 0.412
120 - - 29.81 0.177 0.488 0.363

Nevertheless, our simulation results show that τ jumpM decreases (see Table 1). This can be
explained as follows: in the considered range of the number of particle (from 10 to 120 particles)
the blocking effect is weekly for TDL system due to the number of particles is not large enough.
As expected, the average number of visits to site with high nhigh and the number of unsuccessful
jumps nuns increases monotonously as the number of particles increases from 10 to 120. This
gives rise to decreasing FM and τ jumpM . However, as shown table 1 the DM/DC decreases with
number of particle for all considered lattices. It implies that for one-dimensional lattices, the first
effect (F−effect) is more dominant in comparison to the second one (τ -effect).

Fig. 6 shows that the temperature dependence of correlation factor FM for SDL and TDL
systems. Similar to the case of single-particle, for SDL, the factor FM is independent on tem-
perature but for TDL, the factor FM is significantly dependent on temperature and decreases with
temperature. To get more insight into the diffusive behaviors of many-particle system, we studied
the temperature dependence of quantity ln(DM /DC) shown in figure 7. From figure 7, it can be
seen that the diffusion does not obey Arrhenius relation for all cases. In accordance to ref. [15], the
Arrhenius behavior for diffusion in amorphous material is caused by the compensation between
site and transition disordered. This discrepancy maybe related to the finite energetic distribution
used in [15]. To estimate the strength of blocking effect, we have calculated the ratios FM /FS ,
τjumpM /τjumpS and DM /DSwhich are shown in figure 8. It can be seen that FM /FS decreases
with different rates and depends on the type of disorder and number of particles. Meanwhile for
TDL, the value of τjumpM /τjumpS is almost unchanged or slightly increases with the number of
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particles, for SDL, its value significantly decreases at temperature ξ = 1.2; the ratio DM/DS

decreases with the number of particles for both SDL and TDL. As such, increasing the number of
particles is accompanied with two effects: F-effect that leads to decreasing DM and τ -effect that
leads to increasing DM . However, for TD lattice F-effect is mainly but for SD lattices F -effect is
stronger than τ -effect. Fig. 9 shows the temperature dependence of FM/FS , τjumpM /τjumpS and
DM/DS for SDL and TDL. The temperature dependence of FM/FS as well as τjumpM /τjumpS

is quite different between SDL and TDL. In the considered temperature range, the ratio FM/FS

decreases from about 0.507 to 0.429 for SDL. Whereas, it increases from about 0.513 to 0.927
for TDL. Despite that the factor FM as well as the time τ jumpM significantly depends on the tem-
perature, the ratio DM/DS slightly changes in the considered temperature range. Therefore, the
blocking effect weakly depends on the temperature.

Fig. 8. The dependence of FM /FS ,
τjumpM /τjumpS , DM /DS on number of par-
ticles for (solid symbol) SD and (blank circles)
TD lattices.

Fig. 9. The dependence of FM /FS ,
τjumpM /τjumpS , DM /DS on temperature for
(solid symbol) SDL and (blank circles) TDL
systems.
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V. CONCLUSIONS

Monte-Carlo simulations were carried out to study the diffusion in one-dimensional disor-
dered lattices with Gaussian distributions of site and transition energies. The main results show
that: 1) in the case of single-particle, the diffusion coefficients of particles in SDL and TDL
systems are identical if both systems have the same temperature and energetic distribution. How-
ever, the character of particle’s motion in the systems is quite different. This result enables us to
construct the analytic expressions for diffusion coefficient D, the time between two consecutive
hops of particle τ jump and correlation factor F which show a good agreement between simula-
tion and analytic calculation results. The diffusion coefficient D is proportional to factor F and
1/τ jump. For the SDL, with decreasing temperature, the diffusion coefficient D decreases due to
τ jumpincreases. Conversely, factor F is always equal to 1 and independent of temperature. For
TDL and MDL, with decreasing temperature, the reduction of factor F result in the decrease of
diffusion coefficient D and the decrease of τ jump result in the increases of diffusion coefficient
D. However, because the factor F decreases more strongly than τ jump, this results in the decrease
of diffusion coefficient D as temperature decreases. 2) in the case of many particles, the results
reveal two specific effects: F−effect and τ -effect. With increasing the number of particles, the
diffusion coefficient DM decreases for SDL and TDL due to F-effect is more dominant than τ -
effect. The Arrhenius behavior is not observed for all systems. It can be seen that blocking effect
is significantly dependent on the number of particles but it slightly dependent on the temperature.
In the considered range of the number of particles (from 10 to 120 particles) the blocking effect in
SDL is more dominant than in TDL. The more number of particles the system has, the more clear
the blocking effect reveals.
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