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Abstract. The exact solution for neutrino mass matrix of the Zee-Babu model is derived. The
tribimaximal mixing imposes the conditions on the Yukawa couplings, from which the normal mass
hierarchy is preferred. The derived conditions give a possibility of maximal CP violation in the
neutrino sector.

I. INTRODUCTION

Nowadays, particle physicists are attracted by two exciting subjects: Higgs and
neutrino physics. The neutrino mass and mixing are the first evidence of the beyond
Standard Model. Many experiments show that neutrinos have tiny masses and their
mixing is still mysterious [1]. Recent data are a clear sign of rather large value θ13 [2].

The discovery of the long-waiting Higgs boson at around 125 GeV [3] opened a new
chapter in particle physics. It is essential for us to determine which model the discovered
Higgs boson belongs to? For this aim, the diphoton decay of the Higgs boson plays very
important role. It is expected that new physics might enter here to modify the standard
model (SM) Higgs property.

Within the above mentioned reasons, the search of extended model coinciding with
the current data on neutrino and Higgs physics is one of top priorities. In our opinion,
the model with simplest particle content is preferred. In the SM, neutrinos are strictly
massless. For neutrino mass, it was first pointed out by Zee in Ref. [4] in which new
scalars are added in the Higgs sector with neutrino masses induced at the one-loop level.
After that a two-loop scenario called Zee-Babu model [5] was proposed. The Zee-Babu
model [4–6] with just two additional charged Higgs bosons (h−, k−−) carrying lepton
number 2, is very attractive. In this model, neutrinos get mass from two-loop radiative
corrections, which can fit current neutrino data. Moreover, the singly and doubly charged
scalars that are new in the model can explain the large annihilation cross section of a dark
matter pair into two photons as hinted by the recent analysis of the Fermi γ-ray space
telescope data [7], if new charged scalars are relatively light and have large couplings to a
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pair of dark matter particles. These new scalars can also enhance the B(H → γγ), as the
recent LHC results may suggest.

The Zee-Babu model contains the Yukawa couplings which are specific for lepton
number violating processes. There are a lot of works on constraints the parameter space
of the model [8, 9].

In this paper, starting from the neutrino mass matrix, we get the exact solution,
i.e., the eigenstates and the eigenvalues. As a consequence, the neutrino mixing matrix
is followed. With this exact solution, we can fit with current data and get constraints on
the couplings. We do hope that the experiments in the near future will approve or rule
out the model.

II. NEUTRINO MASS MATRIX IN THE ZEE-BABU MODEL

The Zee-Babu model [5] includes two SU(2)L singlet Higgs fields, a singly charged
field h− and a doubly charged field k−−. Moreover, right-handed neutrinos are not intro-
duced. The addition of these singlets gives rise to the Yukawa couplings:

LY = fab(ψaL)CψbLh
+ + h′ab(laR)

C lbRk
++ +H.c., (1)

where ψL stands for the left-handed lepton doublet, lR for the right-handed charged lepton
singlet and (a, b = e, µ, τ) being the generation indices, a superscript C indicates charge

conjugation. Here ψC = Cψ
T

with C is the charge-conjugation matrix. The coupling
constant fab is antisymmetric (fab = −fba), whereas hab is symmetric (hab = hba). Gauge
invariance precludes the singlet Higgs fields from coupling to the quarks. In terms of the
component fields, the interaction Lagrangian is given

LY =2
[

feµ(ν̄ceµL − ν̄cµeL) + feτ (ν̄ceτL − ν̄cτeL) + fµτ (ν̄cµτL − ν̄cτµL)
]

h+

+ [heeēceR + hµµµ̄cµR + hττ τ̄ cτR + heµēcµR + heτ ēcτR + hµτ µ̄cτR] k
++ +H.c. (2)

where we have used haa = h′aa, hab = 2h′ab for a 6= b. Eq. (1) conserves lepton number,
therefore, itself cannot be responsible for neutrino mass generation.

The Higgs potential contains the terms:

V (φ, h+, k++) = µ(h−h−k++ + h+h+k−−) + · · ·, (3)

which violate lepton number by two units. They are expected to cause Majorana neutrino
masses.

In the literature, Majorana neutrino masses are generated at the two-loop level via
the diagram shown in [6] and again depicted in Fig.1. The corresponding mass matrix for
Majorana neutrinos is as follows

Mab = 8µfach
∗
cdmcmdIcd(f

+)db, (4)

The integral Icd is given by [10]

Icd =

∫

d4k

(2π)4

∫

d4q

(2π)4
1

k2 −m2
c

1

k2 −M2
h

1

q2 −m2
d

× 1

q2 −M2
h

1

(k − q)2 −M2
k

(5)
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Fig. 1. The two-loop diagram in the Zee-Babu model.

Note that Eq. (5) is simplified by neglecting the charged lepton masses [12].
To evaluate the above integral, ones have neglected the charged lepton masses in

the denominator, since these masses are much smaller than the charged scalar masses Mh

and Mk. Then

Icd ≃ I =
1

(16π2)2
1

M2

π2

3
Ĩ(r), M ≡ max(Mk,Mh) (6)

which does not depend on lepton masses. Here Ĩ(r) is a function of the ratio of the masses
of the charged Higgses r ≡M2

k/M
2
h ,

Ĩ(r) =

{

1 + 3

π2 (log
2 r − 1) for r ≫ 1

1 for r → 0,
(7)

which is close to 1 for a wide range of scalar masses.
The neutrino mass matrix arisen from (4) is given by

Mν = −Iµf2

µτ
×





ǫ2ωττ + 2ǫǫ′ωµτ + ǫ′2ωµµ ǫωττ + ǫ′(ωµτ − ǫωeτ − ǫ′ωeµ) −ǫ′ωµµ − ǫ(ωµτ + ǫωeτ + ǫ′ωeµ)
⋆ ωττ + ǫ′2ωee − 2ǫ′ωeτ ǫǫ′ωee − ωµτ − ǫωeτ + ǫ′ωeµ

⋆ ⋆ ωµµ + 2ǫωeµ + ǫ2ωee





(8)

where we have redefined parameters:

ǫ ≡ feτ
fµτ

, ǫ′ ≡ feµ
fµτ

ωab ≡ mah
∗
abmb (9)

Let us denote

ω
′

ττ ≡ ωττ + ǫ′2ωee − 2ǫ′ωeτ ,

ω
′

µτ ≡ ωµτ + ǫωeτ − ǫ′ωeµ − ǫǫ′ωee, (10)

ω
′

µµ ≡ ωµµ + 2ǫωeµ + ǫ2ωee.
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then the neutrino mass matrix can be rewritten in the compact form

Mν = −Iµf2µτ





ǫ2ω′
ττ + 2ǫǫ′ω′

µτ + ǫ′2ω′
µµ ǫω′

ττ + ǫ′ω′
µτ −ǫω′

µτ − ǫ′ω′
µµ

⋆ ω′
ττ −ω′

µτ

⋆ ⋆ ω′
µµ



 . (11)

The above matrix has three exact eigenvalues given by

λ1 =0,

λ2 =
µIf2µτ

2

{

ω′
µµ(1 + ǫ′2) + 2ǫǫ′ω′

µτ + ω′
ττ (1 + ǫ2)

−
√

[

ω′
µµ(1 + ǫ′2) + 2ǫǫ′ω′

µτ + ω′
ττ (1 + ǫ2)

]2
+ 4(1 + ǫ2 + ǫ′2)(ω′2

µτ − ω′
µµω

′
ττ )

}

≡
µIf2µτ

2

(

Fµτ −
√

F 2
µτ + 4(1 + ǫ2 + ǫ′2)(ω′2

µτ − ω′
µµω

′
ττ )

)

,

λ3 =
µIf2µτ

2

{

ω′
µµ(1 + ǫ′2) + 2ǫǫ′ω′

µτ + ω′
ττ (1 + ǫ2)

+

√

[

ω′
µµ(1 + ǫ′2) + 2ǫǫ′ω′

µτ + ω′
ττ (1 + ǫ2)

]2
+ 4(1 + ǫ2 + ǫ′2)(ω′2

µτ − ω′
µµω

′
ττ )

}

≡
µIf2µτ

2

(

Fµτ +
√

F 2
µτ + 4(1 + ǫ2 + ǫ′2)(ω′2

µτ − ω′
µµω

′
ττ )

)

, (12)

where we have denoted

Fµτ ≡ ω′
µµ(1 + ǫ′2) + 2ǫǫ′ω′

µτ + ω′
ττ (1 + ǫ2). (13)

The massless eigenstate is given by

ν1 =
1

√

f2eµ + f2eτ + f2µτ

(fµτνe − feτνµ + feµντ ).

(14)

The mass matrix (11) is diagonalized as

UTMνU = diag(0, λ2, λ3), (15)

where

U =











1√
1+ǫ2+ǫ′2

A1√
1+A2

1
+B2

1

− A2√
1+A2

2
+B2

2

− ǫ√
1+ǫ2+ǫ′2

B1√
1+A2

1
+B2

1

− B2√
1+A2

2
+B2

2

ǫ′√
1+ǫ2+ǫ′2

1√
1+A2

1
+B2

1

− 1√
1+A2

2
+B2

2











(16)
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with the new notations

A1,2 ≡ −
{

2ǫ′ω′
µτ (1 + ǫ2) + ǫ3ω′

ττ + ǫ[(ǫ′2 − 1)ω′
µµ + ω′

ττ ]

∓ ǫ
√

F 2
µτ + 4(1 + ǫ2 + ǫ′2)(ω′2

µτ − ω′
µµω

′
ττ )

}

/
(

2ǫǫ′ω′
µµ + 2(1 + ǫ2)ω′

µτ

)

, (17)

B1,2 ≡
(1 + ǫ′2)ω′

µµ − (1 + ǫ2)ω′
ττ ± ǫ

√

F 2
µτ + 4(1 + ǫ2 + ǫ′2)(ω′2

µτ − ω′
µµω

′
ττ )

2
[

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

] . (18)

The eigenstates νi corresponding to the eigenvalues λi, (i = 1, 2, 3) are found to be

ν1 =
1√

1 + ǫ2 + ǫ′2
νe −

ǫ√
1 + ǫ2 + ǫ′2

νµ +
ǫ′√

1 + ǫ2 + ǫ′2
ντ

≡ 1
√

f2eµ + f2eτ + f2µτ

(fµτνe − feτνµ + feµντ ),

ν2 =
A1

√

1 +A2
1 +B2

1

νe +
B1

√

1 +A2
1 +B2

1

νµ +
1

√

1 +A2
1 +B2

1

ντ ,

ν3 =
−A2

√

1 +A2
2 +B2

2

νe +
−B2

√

1 +A2
2 +B2

2

νµ +
−1

√

1 +A2
2 +B2

2

ντ . (19)

From the explicit expressions of eigenstates, we obtain some useful relations

A1A2 +B1B2 + 1 = 0,

A1 − ǫB1 + ǫ′ = 0,

A2 − ǫB2 + ǫ′ = 0,

(A1 −A2)/(B1 −B2) = ǫ. (20)

and

A1A2 =
(ǫ′2 − ǫ2)ω′

µτ + ǫǫ′(ω′
ττ − ω′

µµ)

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

,

B1B2 = −
(1 + ǫ′2)ω′

µτ + ǫǫ′ω′
ττ

ǫǫ′ω′
µµ + (1 + ǫ2)ω′

µτ

. (21)

III. CONSTRAINTS FROM THE TRIBIMAXIMAL MIXING

The current data on neutrino mass and mixing show that the tribimaximal mixing
is very realistic [14]

UHPS =







2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2






. (22)
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Comparing (16) with (22) yields the following conditions

ǫ = −ǫ′ =
1

2
, (23)

A2 = 0, (24)

B1 = 1, (25)

A1 = 1, (26)

B2 = −1 (27)

Eq. (23) leads to

feτ = −feµ =
1

2
fµτ (28)

Substitution of (23) into expressions of A1, A2, B1 and B2 yields

A1 =−
(3ω′

µµ + 10ω′
µτ − 5ω′

ττ ) +
√

(3ω′
µµ + 10ω′

µτ − 5ω′
ττ )

2 + 16(ω′
µµ − 5ω′

µτ )(ω
′
µµ − ω′

ττ )

4(ω′
µµ − 5ω′

µτ )
,

(29)

A2 =
−(3ω′

µµ + 10ω′
µτ − 5ω′

ττ ) +
√

(3ω′
µµ + 10ω′

µτ − 5ω′
ττ )

2 + 16(ω′
µµ − 5ω′

µτ )(ω
′
µµ − ω′

ττ )

4(ω′
µµ − 5ω′

µτ )
,

(30)

B1 =−
5(ω′

µµ − ω′
ττ ) +

√

(5ω′
µµ − 2ω′

µτ + 5ω′
ττ )

2 + 96(ω′2
µτ − ω′

µµω
′
ττ )

2(ω′
µµ − 5ω′

µτ )
, (31)

B2 =
−5(ω′

µµ − ω′
ττ ) +

√

(5ω′
µµ − 2ω′

µτ + 5ω′
ττ )

2 + 96(ω′2
µτ − ω′

µµω
′
ττ )

2(ω′
µµ − 5ω′

µτ )
, (32)

It can be checked that with the help of (23), all remaining conditions [from (24) to
(27)] are satisfied if

ω′
µµ = ω′

ττ (33)

equivalently for the Yukawa couplings

ωµµ + ωeµ = ωττ + ωeτ (34)

Note that the derived limit is slightly differs from those given in [8].
From the conditions (23) and (33) we obtain 1

m1 ≡λ1 = 0,

m2 ≡λ2 = µIf2µτ (ω
′
µµ + ω′

µτ ) ≡ µIf2µτ (ω
′
ττ + ω′

µτ ),

m3 ≡λ3 =
3

2
µIf2µτ (ω

′
µµ − ω′

µτ ) ≡
3

2
µIf2µτ (ω

′
ττ − ω′

µτ ). (35)

1The integration in Fig.1 is linear divergent and has a surface term [11], which give a similar form
of mass matrix.
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or

ω′
ττ ≡ω′

µµ =
1

µIf2µτ

(m2

2
+
m3

3

)

, ω′
µτ =

1

µIf2µτ

(m2

2
− m3

3

)

. (36)

Using the experimental constraints [17]

|m2
2 −m2

1| ≡ m2
2 = 7.59 × 10−5eV2,

|m2
3 −m2

2| = 2.43 × 10−3eV2 (37)

and assuming m2,m3 to be real, we obtain following four possibilities

• The first case

ω′
µτ = −0.0293855

µIf2µτ
, ω′

µµ =
0.0206734

µIf2µτ
, (38)

ω′
µµ

ω′
µτ

≡ ω′
ττ

ω′
µτ

= −0.703526, (39)

m2 ≡ −0.00871eV, m3 = 0.0500591eV. (40)

• The second case

ω′
µτ =

0.0206735

µIf2µτ
, ω′

µµ = −0.0293856

µIf2µτ
, (41)

ω′
µµ

ω′
µτ

≡ ω′
ττ

ω′
µτ

= −1.42141, (42)

m2 ≡− 0.00871eV, m3 = −0.0500591eV. (43)

• The third case

ω′
µτ = −0.0206735

µIf2µτ
, ω′

µµ =
0.0293856

µIf2µτ
, (44)

ω′
µµ

ω′
µτ

≡ ω′
ττ

ω′
µτ

= −1.42141, (45)

m2 ≡ 0.00871eV, m3 = 0.0500591eV. (46)

• The fourth case

ω′
µτ =

0.0293855

µIf2µτ
, ω′

µµ = −0.0206734

µIf2µτ
, (47)

ω′
µµ

ω′
µτ

≡ ω′
ττ

ω′
µτ

= −0.703526, (48)

m2 ≡ 0.00871eV, m3 = −0.0500591eV. (49)

From the expressions from (38) to (49), it follows

m2 = ±0.00871 eV, m3 = ±0.0500591 eV, (50)

ω′
µµ = ω′

ττ = ±0.703526ω′
µτ , or ω′

µµ = ω′
ττ = ±1.42141ω′

µτ . (51)

The expressions (50) shows that ω′
µµ, ω

′
ττ and ω′

µτ are the same order, and neutrinos follow
the normal mass hierarchy.
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Table 1. The values of γ corresponding to m2,m3

m2 [eV] m3 [eV] γ[rad]
−0.00871 0.0500591 0.9872π/2
0.00871 −0.0500591 0.9872π/2
0.00871 0.0500591 1.0123π/2
−0.00871 −0.0500591 1.0123π/2

Using the standard parametrization of the neutrino mixing matrix (the PMNS ma-
trix) in terms of three angles and CP violating phases [15]

U =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13 e
−iδ

0 1 0
−s13 eiδ 0 c13









c12 s12 0
−s12 c12 0
0 0 1









1 0 0

0 eiγ/2 0
0 0 1





(52)
where δ and γ are the Dirac and Majorana CP phases, respectively, and sij(cij) =
sin θij(cos θij) ≥ 0. The above Majorana mass matrix is diagonalized by the PMNS matrix

UTMνU = Mdiag = diag(m1,m2,m3). (53)

In the case of the normal mass hierarchy, the four parameters are described as [8, 12]

ǫ = tan θ12
s23
c13

+ tan θ13 e
iδ ,

ǫ′ = tan θ12
s23
c13

− tan θ13 e
iδ,

ω′
µτ

ω′
µµ

= − c213s23c23
c213c

2
23 + r2/3(s12s13c23 e−iδ + c12s23)2e−iγ

(54)

−
r2/3(s12s13c23 e

−iδ + c12s23)(s12s13s23 e
−iδ − c12c23)e

−iγ

c213c
2
23 + r2/3(s12s13c23 e−iδ + c12s23)2e−iγ

,

ω′
ττ

ω′
µµ

=
c213s

2
23 + r2/3(s12s13s23 e

−iδ − c12c23)
2e−iγ

c213c
2
23 + r2/3(s12s13c23 e−iδ + c12s23)2e−iγ

, (55)

with r2/3 = m2/m3.
We can easily see that with the help of (33), Eq. (55) is automatically satisfied.

On the other hand, from (54) ones can find the values of γ corresponding to those of
m2,m3 specified in (40), (43), (46) and (49) shown in Table 1, in which the values of γ
is approximately equal to π

2
. So the condition (33) leads to the maximal CP violation:

sin γCP ≃ 1, as mentioned in Ref. [16].

IV. SUMMARY

In this paper we have derived the exact eigenvalues and states of neutrino mass
matrix in the Zee-Babu model. The tribimaximal mixing which is very realistic, imposes
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some conditions on the Yukawa couplings. The constraints derived in this work slightly
differ from other ones given in the literature. The analysis showed that there exists
possibility of maximal CP violation in the neutrino sector of the model. This requires
reevaluation of the parameters in the model. This problem will be presented elsewhere.
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