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Abstract. We suggest a general approach based on the nearest-neighbor tight-binding approxima-
tion (TB) to investigate the band structure and conductance of a quasi-one dimensional system.
Numerical calculations carried out for Graphene nanoribbons (GNRs) with different widths and
edge conditions (zigzag and armchair) reveal the well-known results that the electronic properties
of GNRs depend strongly on the size and geometry of the sample.

Although various carbon-based structures have been studied for decades, graphene
was only isolated experimentally in 2004 [1,2]. Graphene, the only truly two-dimensional
(2D) nano crystal, is made out of carbon atoms arranged on the honeycomb structure.
Recently, graphene has attracted much attention, both experimental and theoretical due to
its unique and unusual electronic properties. One of the most interesting features is that,
low energy excitations are massless, chiral, Dirac fermions which mimic the relativistic
particles [1,2], though its Fermi velocity is 300 times smaller than the speed of light
c (vF ≈ 106ms−1). In addition, the density of material electrons may be huge, ne ≈
4 × 1015cm−2 [3] that makes the graphene look the most promising for nanoelectronic
devices in the future.

The fact that distinguishes graphene from ordinary semi-conductantor and metallic
systems, the Dirac fermions do not obey the conventional Schrödinger equation. In 1984,

based on the ~k.~p approximation, Vincenzo and Mele found that the low energy excitations
obey the two-dimensional Dirac-like equation [5]. Solving this equation, one can find out
the wave functions of fermions and other dynamic properties of infinite graphene sheets
[1,2,4]. However, in experiment and technology, GNRs ( narrow graphene strips) are more
attractive because of their potential in creating nanoelectronic devices. In fact, to deal
with GNRs one can also use the Dirac-like equation approach with appropriate boundary
conditions to [1-3,6,7]. Nevertheless, when the GNRs become narrower (the width of the

GNRs is less than 15Ȧ) the results of the ~k.~p approximation do not work well due to
the edge effects [6]. In this case, the tight-binding (TB) approximation is a more effective
method because of its more accuracy. There are numerous papers in which the TB method
is used for GRNs with the different geometries and sizes [8-11]. In this paper, we suggest
a general approach based on the TB method to calculate band structure and conductance
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of a quasi-one dimensional (Q1D) structure. In order to explicitly illustrate this method,
we bring out the numerical results for the band structure and conductance of the GNRs
with two well-addressed types of edges, zigzag and armchair. Our results are qualitatively
in agreement with those obtained from other methods. Detailed calculations for the band
structure show that all zigzag GNRs are metallic with localized states on two edges, while
armchair GNRs are either metallic or insulating, depending on the ribbon widths [6,10,12-
16]. Numerical analyses of the conductance also demonstrate that due to the finite width
and geometry of GNRs the conductance will be quantized [3,7,17-19], increasing step by
step as Fermi energy increases.

Let us consider a quasi-one dimensional structure built up from unit cells of N0 sites.
Base on tight-binding approximation, the Schrodinger equation takes the form:

Hn,n−1ψn−1 +Hn,nψn +Hn,n+1ψn+1 = Eψn, (1)

where ψn is the N0-dimensional vector representing the wave function at nth unit cell,
Hamiltonian Hn,m (m = n, n± 1) is a N0 ×N0 matrix. It is worth to notice that only the
nearest neighbor interaction terms of the Hamiltonian appear in the expression . We can
obtain, due to periodicity of the structure: Hn,n = H0, Hn,n−1 = H1 and Hn+1,n = H2

(Hermite conjugation requires that H2 = H+
1 ). To solve the equation (1), based on Bloch’s

theorem, we seek the solution in the form ψn ∼ eikn, where k is the Bloch wave vector.
By inserting this form of the solution into the equation (1), the simple eigenequation for
eigenvalue E is brought out:

det(H1e
−ik +H0 +H2e

ik − EI) = 0. (2)

The equation (2) gives N0 solutions E(k) corresponding N0 subbands of the dispersal
relation. In the case of Garaphene, one will see that a half of them is valent, and the rest
is conductive.

Next, we will derive the formula for the conductance of a quasi-one dimensional
structure. In order to do that we consider a sample sandwiched between the two semi-
infinite leads. It is assumed that two semi-infinite leads have the same lattice structures
as that in the centre sample to avoid any scattering contribution from the mismatched
interfaces between different types of lattice. The leads are doped so much that make them
nearly metallic, while the sample may be lighter doped, or maybe imposed by some extra-
fields. Due to the extra-fields,the periodicity is broken inside the sample that contributes
to the different form of the Hamiltonian in side the sample. The HamiltonianHn,m, which

represents for the interaction between nth and mth unit cells, will be changed to different
forms due to concrete kinds of doping or particular extra-fields. The Landauer-Buttiker
formula for conductance is given by [20]:

G =
2e2

~

∑

n

∑

m

Im
In

|t2mn|, (3)

where tmn is the transmission coefficient of the incoming wave in nth band on the left and
the outgoing wave in mth band on the right, In and Im are the corresponding currents.
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Conventionally, the probability current is proportional to the group velocity which is
derived as: vg = dE/dp. We notice that base on the general tight-binding Hamiltonian,
the probability current can be found by the original procedure of quantum mechanics,
which gives:

In,n−1 ∼ ψ†
nH1ψn−1 − ψ†

n−1H
†
1ψn. (4)

For Bloch state in band q of energy E we simply have to insert ψn = Cq(E)eik
qn into

the equation (4) to gain the probability current of the state.

In the next part, we will use the TB approach to calculate the transmission coefficients
tmn. It has simply been obtained by solving the Schrodinger equation for scattering states,
mathematically, the equation (1) will be solved with appropriate boundary condition.
Roughly speaking, boundary of scattering states is physically described as: the wave
function injects from the left lead purely in the band p and then it is scattered into
outgoing (from the sample) wave functions in all the bands. The wave functions in the
left and right leads take the form:

ψn = Cp(E)eik
pn +

∑

q∈Q1,Q10

rqpC
q(E)eik

qn, (5)

for the left lead and

ψn =
∑

q∈Q2,Q20

tqpC
q(E)eik

qn, (6)

for the right lead. In which, for each energy E, the wave numbers kq(E), derived from
dispersal equation (2), are divided in to four sub-sets: Q1 for left to right wave, Q10 left
to right decay wave, Q2 right to left wave, Q20 right to left decay wave.

These conditions can be viewed as boundary conditions for the wave function in the
sample. In fact, imposing them in the general form on the wave equation [1] of the sample,
we will gain the formulae for tqp and rqp, this can be called matching the wave function
through the sample. To visualize how the wave function will be matched, we have to solve
the tight-binding equation (1) for all the sites in the sample (note the periodicity is now
broken) with coupling to the wave function on the leads.

The equation (1) for n altering from 0 to N + 1 can be viewed as (N + 1) × N0

linear equations for the unknown ψn while both ψ−1 and ψN+2 are considered to be
known. It is worth to notice that for n = 0 and n = N + 1 the wave functions belong
to the leads rather than to the sample. The equation can be written down in the matrix
form: A ∗ (ψ0, ψ1, . . . , ψN+1)

t = (−H0,−1ψ−1, 0, . . . ,−HN+1,N+2ψN+2)
t, in which A is the

coefficient matrix which can be expressed explicitly:

A =

















H0,0 −E H0,1 · · · 0 0
H1,0 H1,1 −E · · · 0 0

0 H2,1 · · · 0 0
. . · · · . .
0 0 · · · HN,N −E HN,N+1

0 0 · · · HN+1,N HN+1,N+1 − E

















. (7)
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Fig. 1. Schematic geometry of a unit cell, which has N0 atoms, in the tight-
binding model used. The unit cells are chosen corresponding to the two types of
edges: (a) the zigzag edge and (b) the armchair edge.

Solving the equation we have the solution in the form (ψ0, ψ1, . . . , ψN+1)
t = G0 ∗

(−H0,−1ψ−1, 0, . . . ,−HN+1,N+2ψN+2)
t, where G0 = A−1. Note that we need to match up

the wave function between the leads and the sample, so extracting only the term of wave
function on the lead we have the relation in the form (ψ0, ψN+1)

t = Ḡ(−H0,−1ψ−1,
− HN+1,N+2ψN+2)

t. Inserting the ”forms” (5) and (6) into this equation, one have the
equations for tqp and rqp.

The above argument is so general that this method can be utilized for any periodic
Q1D structures. The difference between particular systems is related to the widths and
edge conditions which are represented in the Hamiltonian. For a particular system, it
is not very difficult to write the Hamiltonian down explicitly because nearest neighbor
interactions are only considered. The dispersal relation is calculated by using equation (2).
The probability current can be inferred from equation (4) and the transmission coefficients
are computed as we show above. After that we can easily calculate the conductance, using
equation (3). Obtained numerical results are presented in Fig 2-4 for GNRs with zigzag
and armchair edges and with different widths.

GNRs are cut out from the graphene sheet, the honey-comb lattices of Carbon atoms
on a plane [1,2], along a direction with a defined width. As carbon nanotubes, the ribbons
may have various geometrical form due to the direction of ”chiral”, among them, the most
common types being of interest are armchair-edge and zigzag-edge ribbons [2]. The geom-
etry of these GNRs are illustrated on the top and bottom edges of Fig. 1. In the zigzag
case (Fig. 1a), it is interesting that the atoms at each edge are of the same sublattice (A
on the top and B on the bottom edge). In this figure, we also show the unit cell used in
the tight-binding calculation for the zigzag ribbons, containing N0/2 A-type atoms that
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Fig. 2. The band structures for a zigzag graphene nanoribbon, E(t) versus ka0,
k is the wave vector parallel to the graphene nanoribbon edges, a0 is the lattice
constance, t is the nearest neighbor hopping energy.

alternate along the unit cell with N0/2 B-type atoms. The total width of the GNRs is

W = N0/4 ∗
√

3, a0 − a0/
√

3, where a0 is lattice constant, a0 =
√

3acc (acc = 1.42 Ȧ, the
C-C bond length). Similarly, the structure of the armchair GNRs consists of atoms of two
types of sublattices A and B as illustrated on the Fig. 1b. Each unit cell also contains
N0/2 A-type atoms and N0/2 B-type atoms alternately. However, it is different from the
zigzag edge that in each edge (top or bottom), there have both A-type atoms and B-type
atoms alternately and the total width is W = (N0 − 2)/4 ∗ a0.

In Fig. 2 and Fig. 3, the band structures in zigzag and armchair edges are presented.
It is explicitly that the spectrum breaks into a set of subbands due to the quantized
confinement. In Fig. 2, the conductance of zigzag GNRs with 88 atoms per unite cell (ap-
proximately 10nm width) is depicted. In fact, the lowest conduction band and the upmost
valence band touch at the Dirac points, that leads to the metallic behavior. These gapless
bands produced confinement of the electronic states near the Dirac points [1]. The same
result was also obtained for the GNRs with different widths N0 = 86, 92. And therefore we
arrived at the well known result that all zigzag GNRs are metallic [6,12,13]. The GNRs
with armchair edge of 88 (a) and 90 (b) atoms per unit cell are considered; the band
structures are showed in the Fig. 3. As can be seen in this figure, the band structures of
the armchair GNRs depend strongly on their widths. Due to the gap between conduction
and valence band, the armchair GNRs can be metallic (the gapless case, Fig. 3a) or semi-
conductor (the gapped case, Fig. 3b). It means that armchair GNRs are metallic when the
number of atoms in unit cell: N0 = 3n+1 (n is an integer), and insulating otherwise[1,3,6].
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Fig. 3. The band structures for a armchair graphene nanoribbon: (a) N0 = 88,
the gap energy is zero, (b) N0 = 92, the gap energy of EC ≈ 0.08t appears [10].

Numerical results fit well with the analytic formula of the gap for armchair GNRs that is
given in Ref. [10]:

EC = ±t|2 cos(
pπ

n+ 1
) + 1|, (8)

where t is the nearest neighbor hopping energy (t = 2.7eV ), p is the quantum number
of the subbands, n is an integer (n = N0/2). The gap energy can be inferred from this
formula, however, its value varies from particular cases. Furthermore, in the armchair
GNRs two Dirac points (K and K

′

) are mixing together that contribute to one valley
exited in the first Brilloin zone compared with two distinct valleys in the zigzag case [6,8].
We notice that the dependence of the electronic states on the width of the GNRs can be
understood in terms of eigenstates of the Dirac Hamiltonian with appropriate boundary
conditions[1,3,6].

Figure. 4 shows the Fermi energy dependence of the conductance for the zigzag and
armchair ribbons withN0 = 88 (a) and N0 = 156 (b). It is easy to realize that the ballistic
conductance of GNRs increases step by step as a function of the Fermi energy due to the
fact that it is simply proportional to the number of the ” active transport” channels at
a given energy. Each time one channel is opened the conductance is risen by a value of
g0 ∼ 2e2/h [1]. The Fig. 4a shows that the conductance, in the armchair GNRs, increases
with the step, ∆g = g0, as a function of Fermi energy. On the contrary, for zigzag GNRs
(fig. 4b), the width of the steps in the G(EF ) is two times larger compared to armchair
GNRs, ∆g = 2g0. This is resulted from the band structures of GNRs. In the armchair
GNRs, due to the mixing two Dirac points, there is only one valley in the first Brilloin
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Fig. 4. The conductance as a function of the Fermi energy: (a) armchair and (b)
zigzag edges

zone. It means that merely one after another new ”active transport” channel is opened as
the Fermi energy increases. However, in the zigzag GNRs, there are the two new channels
opened simultaneously because of the two valleys in the first Brilloin zone [3,18,19].

In conclusion, we have suggested a tight-binding approach for calculating the band
structure and conductance for any periodic 1D systems. As a useful illustration, numeri-
cal calculations have been performed for GNRs with zigzag and armchair edges and with
different ribbon widths. Obtained results showed that GRNs are either metallic or insu-
lating depending on their size and geometry and the conductance of GRNs is quantized
because of the ribbon finite widths. The suggested TB-approach is quite general and
should be applicable to calculate various static and dynamic characters for a wide range
of 1D systems.
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