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Abstract. The Van der Waals and Casimir interactions between graphene and a material plate

are studied by using the Lifshitz theory and approximate expressions for the free energy and

force. The reflection properties of electromagnetic oscillations on graphene are governed by spe-

cific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying

a continuous fluid with some mass and charge density. The obtained formulas are applied to the

cases of a graphene interacting with Au plate. We calculated also the Casimir interaction between

carbon nanotube single wall and Au plate. The comparision with other recently obtained theoretical

results are made and the generalizations to more complicated carbon nanostructures are discussed.

I. INTRODUCTION

The van der Waals and Casimir interactions which are generally called are a disper-
sion interaction investigated in technology. When the characteristic size of micro devices
shrinks below a micrometer, collective quantum phenomena caused by the existence of zero
point oscillations of the electromagnetic field come into play.At separations below 100 nm,
the role of physical phenomena originating from vacuum oscillations, the dispersion in-
teraction can become dominant. There are several experiments on measurement of the
Casimir effect between two bodies performed [1, 2, 3, 8]. Thereafter, the precision of mea-
surements of Casimir force was significantly increased and different methods controlling
the force magnitude were elaborated opening possible applications to nanomachines.

It is much crucial to understand dispersion interaction between macroscopic bodies
(a material plate with carbon nanostructures). A unified theory of dispersion interaction
between parallel material plates in thermal equilibrium separated by a vaccum gap was
developed by Lifshitz (1956). In Ref.[1, 4] the Lifshitz formulas were obtained for the dis-
persion interaction between graphene and a material plate. The Lifshitz theory presents
an considerable opportunity for extensive studies of Casimir force. The use of approxi-
mations such as the proximity force theorem [9] permitted one to achieve rather acurate
results for CNTs near a plane plate, basing on a configuration frequently used in recent
experiments on measuring the Casimir force . In most cases, the macrobodies with plane
boundaries were supposed to be isotropic.

In the present paper, we use the description of graphene in terms of the two di-
mensional free electron gas [1, 4] in order to extend the Lifshitz theory of the dispersion
interaction to the case of carbon systems. Graphene is considered as an infinitely thin



290 VAN DER WAALS AND CASIMIR INTERACTIONS OF SOME GRAPHENE, MATERIAL PLATE ...

positively charged flat sheet, carrying a contunuous fluid with some mass and negative
charge densities. The sheet is characterized by some typical wave number Ω determined
by the parameters of the hexagonal structure of graphite. In Refs [1, 2, 3, 4, 10] the
interaction of the electromagnetic oscillations with such sheet was condidered and the
normal modes and reflection coefficients were found. The Lifshitz formula for interaction
of Au plate and graphene is obtained. The fit function associating with Proximity Force
Approximation (PFA) method for interaction of CNTs with Au plate are used to calculate
when the nanotube is in close the plate.

This paper is organized as follows: In section 2, we present the Lifshitz formula
for the van der Waals and Casimir interactions between bodies. In section 3, calculation
results are presented not only for the Casimir interaction between Au plate and graphene
but also for that between Au plate and CNTs. Finally, section 4 shows our discussions
and conclusions.

II. LIFSHITZ FORMULA OF CASIMIR INTERACTION BETWEEN

GRAPHENE AND AU PLATE

We consider the van der Waals and Casimir interaction of a graphene occupying the
xy-plane, z = 0, with a material semispace or a plate. The separation distance between
the boundary plane of the semispace (plate) and graphene is a. The dispersion interaction
of the two plane parallel bodies (plates or semispaces) labeled by the upper indices 1 and 2
with the electromagnetic oscillations can be described in terms of the reflection coefficients

r
(1)
TM,TE and r

(2)
TM,TE for two independent polarizations of electromagnetic field (transverse

magnetic and transverse electric). In so doing the van der Waals and Casimir interaction
(the dispersion ineraction) free energy per unit area is given by the Lifshitz formula [1]
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Here k⊥ is the magnitude of the wave vector component perpendicular to the z-axis, ξ is
the frequency variable along the imaginary axis (ω=iξ) and
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√

k2
⊥

+
ξ2

c2
. (2)

Equation (1) is applicable at very low temperatures. If the temperature is higher Eq.(1)
is simply generalized by changing the integration with respect to ξ for the summation
over the discrete Matsubara frequencies. The general derivation of Eq.(1) for arbitrary
reflection coefficients can be found in Ref.[1, 10]. From Eq.(1) the Van der Waals and
Casimir forces acting between two bodies are :
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Equations (1) and (3) can be used to obtain the interaction energy and the force between
a graphene and an atom (molecule), graphene and graphene sheet, graphene and carbon
nanotube, between two carbon nanotubes, and a single wall carbon nanotube with Au
plate. Now we specify the reflection coefficients. Let a semispace made of isotropic material
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(labeled by upper index 2) and be describled by the dielectric by the dielectric permittivity
ε (ω).In this case the reflection coefficients are [1, 4, 10]

r
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ε(iξ)q − k

ε(iξ)q + k
, r
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In our computations, the reflection coefficients for an Au semispace are peresented in
Eq.(4). As to Eq.(4), it depends on the dielectric permittivity of Au which can be approx-
imated by means of the plasma model [5, 7]

ε(iξ) = 1 +
ω2

p

ξ2
, (6)

where ωp is the plasma frequency (in gold, ωp = 1.37× 1016 rad/s ).
If the first body is graphene, the idealization of the frequency-dependent dielectric

permittivity cannot be used. In this case the reflection coefficients can be found [1, 4] by
modeling graphene as a two-dimensional plasma sheet carring a negatively charged fluid of
π-electrons.For the hexagonal structure of carbon layers, there is one π-electrons per atom
resulting in two π-electrons per one hexagonal cell. This leads to the following values for
the density of π-electrons and the wave number of the sheet

n =
4

3
√

3l2
, Ω = 2π

ne2

mc2
= 6.75× 105m−1, (7)

where l = 1.421A0 is the side length of a hexagon. This result leads to the following
reflection coefficients on the graphene plasma sheet taken at the imaginary frequency axis
[1, 2, 3]
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III. CALCULATION OF THE CASIMIR INTERACTION BETWEEN AU

PLATE AND GRAPHENE

We apply Eqs.(1) and (3) to calculate the Casimir interaction energy and force
acting per area between Au plate and graphene per unit area. The computational results
for Caimir energy and force density E(a), F (a) between Au plate and graphene normalized
to the Casimir energy and force density in the configuration of an ideal metal plate are
calculated with the range of a from 2 nm to 80 nm. These results absolutely match with
those presented in Ref.[1]. From these data above, we are likely to design a programme
to find the fit function Efit(a) and Ffit(a) describing the dependence of free energy and
force per unit area on a distance, respectively.

Let the single-wall nanotube of radius R lie along the y axis at a separation a from
the boundary surface of the material semispace. For sufficiently small a, the interaction
free energy and force in such configuration can be approximately obtained by using the
proximity force theorem , Efit(a) and Ffit(a). According to the proximity force theorem,



292 VAN DER WAALS AND CASIMIR INTERACTIONS OF SOME GRAPHENE, MATERIAL PLATE ...

we replace the cylindrical surface by a set of infinitely long plane strips of width dx and
the nanotube is modeled by a cylindrical graphene sheet. The interaction between each
strip, substituting a part of the cylindrical surface, and the opposite strip belonging to
the boundary plane of Au semispace is calculated by both fit functions. The separation
distance between the two opposite strips with coordinate x is

z = z(x) = a + R −
√

R2 − x2. (9)

The computational results are represented in Figures 1 and 2

Fig. 1. The Casimir interaction force per unit

length between the nanotube and a Au semis-

pace.

Fig. 2. The Casimir interaction free energy per

unit length between the nanotube and a Au

semispace.

It is noted that the results presenting in Ref.[1] were calculated in low temperature
(nearly 0K) and the fit functions were used in the distance from 2 nm to 10 nm. In
this range, the PFA method becomes more accurate than lager distances because it has
relation to the ratio of a to R. The smaller a/R is, the more accurate the computation
is. The precision of PFA in such configuration applied in measurements was given in the
Ref.[9].

IV. CONCLUSION AND DISCUSSION

In the foregoing, we have obtained the Lifshitz-types formulas describing the free
energy and force of the Van der Waals and Casimir interaction between a material plate
and a graphene plate, a single-wall carbon nanotube and material. The distinguishing
feature of these formulas is that they describe graphene by using the reflection coefficents
obtained from the specific boundary conditions for the electromagnetic oscillations on the
infinitely thin plasma sheet. This approach permits to circumvent the use of the concept
of dielectric permittivity commonly used in the Lifshitz theory of the van der Waals and
Casimir force between macrobodies, but being not directly applicable to single-wall carbon
nanostructures.

The obtained Lifshitz-type formulas for the van der Waals and Casimir energy and
force were applied to the case of graphene interacting with the Au wall. The wall material
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was described by the dielectric permittivity along the imagimary frequency axis computed
using the tabulated optical data for the complex index of refraction for Au. In the case
of Au, the interaction energy and force with graphene was also obtained using the plasma
model dielectric function. The van der Waals and Casimir interaction of a material wall
with a single-wall carbon nanotube in different radiuses in close proximity and fit functions,
respectively. At separations less than 2 nm, there may be the attractive forces of chemical
nature and short-range repulsive forces of exchange nature come into play. These forces
depend on atomic structure of a surface and cannot be described macroscopically by means
of the boundary conditions.

The results in this paper of Au-graphene interaction entirely match with [1]. The
measure in this paper suggest some advantages in comparison to the approximate way used
to estimate Casimir interaction in previous articles. As was recently noted in [1, 4], they
applied PFA transformations in original Lifshitz expressions and computed by designing
programs. Therefore, with each other configuration, they have to write a different pro-
gram. While, offering fit functions for Casimir free energy and force between Au plate and
graphene help us see form of Casimir energy and force and calculate other configurations
by only these fit functions.
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