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Abstract. The acoustoelectric effect in a superlattice (SL) is investigated for an acoustic wave
whose wavelength λ = 2π/q is smaller than the mean free path l of the electrons and hypersound
in the region ql � 1. (where q is the acoustic wave number) . A nonlinear dependence of the
acoustoelectric current jac on the constant electric field E is obtained by using the classical Boltz-
mann kenetic equation. The analytical expression for the acoustoelectric current jac is calculated
for constant of momentum relaxation time. Numerical calculations is done, and the result is
discussed for a typical GaAs/AlGaAs SL. It is noted that when the electric field is negative the
current jac decreases, reaches a minimum and rises. On the other hand, when the electric field
is positive the current increases, reaches a maximum and then falls off. A similar observation
has been noted for an acoustoelectric interaction in a multilayered structure resulting from the
analysis of Si/SiO2 structure. The dominant mechanism for such a behavior is attributed to the
periodicity of the energy spectrum of electron along the SL axis.

I. INTRODUCTION

When an acoustic wave is absorbed by a conductor, the transfer of the momentum
from the acoustic wave to the conduction electron may give rise to a current usually
called the acoustoelectric current jac or a constant electric field Eac in the case of an
open circuit. The study of this effect is crucial because of the complementary role it may
play in the understanding the properties of the SL, which, we believe, should find an
important place in the acoustoelectronic devices. The study of acoustoelectric effect in
bulk materials have received a lot of attention [1-5]. Recently, there have been a growing
interest in observing this effect in mesoscopic structures [6-8]. The interaction between
surface acoustic wave (SAW) and mobile charges in semiconductor layered structures and
quantum wells is an important method to study the dynamic properties of low-dimensional
systems. The SAW method was applied to study the quantum Hall effects [9-11], the
fractional quantum Hall effect [12], and the electron transport through a quantum point
contact [13, 14]. It has also been noted that the transverse acoustoelectric voltage (TAV)
is sensitive to the mobility and to the carrier concentration in the semiconductor, thus
it has been used to provide a characterization of electric properties of semiconductors
[15]. Interface state density [16], junction depth [17], and carrier mobility [18] have been
measured with this method. Especially, in recent time the acoustoelectric effect was
studied in both a one-dimensional channel [19] and in a finite-length ballistic quantum
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channel [20–22]. In addition, the acoustoelectric effect was measured by an experiment
in a submicron-separated quantum wire [23], in a carbon nanotube [24], in an InGaAs
quantum well [25]. The SAW method was also applied to the study acoustoelectric effect
and acoustomagnetoelectric effect [26–28].

In this paper, we examine this effect in a superlattic for the case when electron
relaxation time is not dependent on the energy and we will show that the presence of
minibands in the SL will result in a nonlinear dependence of the jac on the wavenumber
q. Also, in the presence of an applied constant electric field E a threshold value E0 is
obtained where the acoustoelectric current changes direction.

This paper is organized as followed. In Section 2, we outline the theory and condi-
tions necessary to solve the problem, in Section 3 we discuss the results, and in Section 4
we come to a conclusion.

II. ACOUSTOELECTRIC CURRENT

By using the classical Boltzmann kenetic equation method in [26,27,28], we calcu-
lated the acoustoelectric current in SL. The acoustic wave is considered a hypersould in
the region ql � 1 (l is the electron mean free path, ~q is the acoustic wave). Under such
circumstances, the acoustic wave can be interpreted as monochromatic phonons having

the 3D phonon distribution function N (~k), which can be presented in the form [28]

N (~k) =
(2π)3

~ω~qvs
Φδ(~k− ~q), (1)

where ~ = 1, ~k is the current phonon wave vector, Φ is the sound flux density, ω~q and vs are
the frequency, and the group velocity of sound wave with the wave vector ~q, respectively.

It is assumed that the sound wave and the applied electric field ~E propagates along
the z axis of the SL. The problem was solved in the quasi-classical case, i.e. 2∆ � τ−1,
2∆ � eEd (τ is the relaxation time, d is the period of the SL, 2∆ is the width of the
lowest energy miniband and e is the electron charge). The density of the acoustoelectric
current can be written in the form [29]

jac =
2e

(2π)3

∫

Uacψi(~p)d
3p. (2)

Here, ψi(~p) is the solution of the Boltzmann kinetic equation in the absence of the
magnetic field, ~p is the electron momentum and

Uac =
2πΦ

ω~qvs

{

| G~p−~q,~p |2 [f(εn,~p−~q) − f(εn,~p)]δ(εn,~p−~q − εn,~p + ω~q)

+ | G~p+~q,~p |2 [f(εn,~p+~q)− f(εn,~p)]δ(εn,~p+~q − εn,~p − ω~q)
}

, (3)

where f(εn,~p) is the distribution function and εn,~p is the energy spectrum of the electron,
n denotes quantization of the energy spectrum, and G~p±~q,~p is the matrix element of the
electron-phonon interaction. Introducing a new term ~p′ = ~p − ~q in the first term of the
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integrals in Eq.(3) and taking into account the fact that

| G~p,~p′ |
2=| G~p′,~p |2, (4)

the matrix element of the electron-phonon interaction for qd� 1 is given by

| G~p, ~q |2=
∧2~q2

2σω~q
, (5)

where ∧ is the deformation potential constant and σ is the density of the SL.
We can express Eq.(2) in the form

jac
i = −

eΦ

2π2vsω~q

∫

| G~p+~q,~p |2 [f(εn,~p+~q)− f(εn,~p)]×

× [ψi(~p+ ~q)− ψi(~p)]δ(εn,~p+~q − εn,~p − ω~q)d
3~p, (6)

where ψi(~p), as indicated in [29], is the mean free path li(~p).
In solving Eq. (6) we considered a situation whereby the sound was propagating

along the SL axis (Oz), thus the acoustoelectric current in Eq.(6) in the direction of the
SL axis becomes

jac
z = −

eΦ~q2τ∧2

4π2vsω
2
~qσ

∫

[f(εn,~p+~q) − f(εn,~p)][lz(~p+ ~q) − lz(~p)]δ(εn,~p+~q − εn,~p − ω~q)d
3~p. (7)

The distribution function in the presence of the constant applied field ~E is obtained by
solving the Boltzmann equation in the τ approximation. This function is given

f(~p) =

∫

∞

0

dt

τ
exp(−t/τ)f0(~p− e ~Et), (8)

where

f0(~p) = Θ(εF − εn,~p) =

{

0 εn,~p > εF

1 εn,~p < εF ,
(9)

where εF is Fermi energy. The energy spectrum εn,~p of the electron in the SL is given
using the usual notation by

εn,~p =
~p2
⊥

2m
+ ∆n(1− cos(pzd)) (10)

where, ~p⊥ and pz are the transverse and longitudinal (relative to the SL axis) components
of the quasi-momentum, respectively; ∆n is the half width of the nth allowed miniband,
m is the effective mass of electron and d is the SL period.

We assumed that electrons are confined to the lowest conduction miniband (n = 1)
and omitted the miniband index. That is to say that the field does not induce transitions
between the filled and empty minibands, thus the ∆n can be written as ∆.

Substituting Eq.(8) and Eq. (10) into Eq. (7) we obtained the acoustoelectric current

jac
z = jac

0

∫

∞

0

dt

τ
exp(

−t

τ
)
[

A sin
qd

2
+ (1 −A2)1/2 cos

qd

2

]

sin(eEt−
q

2
)d, (11)
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where

jac
0 =

emΦ~q2τ ∧2 ∆

πvsω
2
~qσ

[

1 −
( ω~q

2∆ sin(qd/2)

)2]1/2

,

and

A =
ω~q

2∆
+ cos

qd

2

[

1 −
( ω~q

2∆ sin(qd/2)

)2]1/2

.

The Eq.(11) is acoustoelectric current in the case of the presence of external electric

field ~E applied along the z axis and the degenerate electron gas.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this situation Eq.(11) was solved analytically and the result were given as

jac
z = −jac

0

1

(eEdτ)2 + 1

[

1 − eEdτ tan−1(qd/2)
]

×

×
[

A sin2(qd/2) + (1−A2)1/2 sin(qd/2) cos(qd/2)
]

, (12)

Eq. (12) is the analytical expression of acoustoelectric current in the case of the presence
of external electric field. From Eq. (12) it is observed that if

E > E0 =
1

edτ
tan(qd/2)

then the acoustoelectric current changes sign and the value E0 can be interpreted as a
threshold field. E0 is a function of the SL parameters d, frequency ω~q and the wavenumber

q. For instance, at d = 10−8m, τ = 10−12s, and ω~q = 1011s−1, the threshold field E0 =

31.94V cm−1 which is small but can still be observed. The about obtained result is similar
to the result in [27]. In the absence of the constant applied field E = 0, from Eq.(12) we
obtain

jac
z = −jac

0

[

A sin2(qd/2) + (1 −A2)1/2 sin(qd/2) cos(qd/2)
]

. (13)

We can see from the Eq. (13), when qd� 1 and ωq � 2∆ sin(qd/2), jac is very small, i.e.
there appears a transparency window. This is a outcome of the conversation law. Under
this condition there is no absorption of acoustic waves, hence no acoustoelectric current
[31]. The SL can be used as an acoustic wave filter.

The dependence of jac
z on E was investigated in Fig. 1 and Fig. 2. The dependence

of jac
z /j

ac
0 on E for given ω~q is not linear. These peaks increase with increasing of ω~q.

More interesting is the nature of the acoustoelectric current. It is observed that when
the electric field is nagative the current decreases, reaches a minimum and then rises in a
manner similar to that observed during a positive differential conductivity. On the other
hand, when the electric field is positive the current increases, reaches a maximum then
decreases. Threshold field E0 also increases with increasing in ω~q. It is worthy to note
that a similar nonlinear relation was obtained for a TAV experiment on Si/Si02 and this
result agreed with result [30].
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Fig. 1. The dependence of jac
z /jac

0
on the

eEdτ/~: ω~q = 2.1011s−1 (solid line); ω~q =

1.5.1011s−1 (dashed line); ω~q = 1.1011s−1

(dotted line).

Fig. 2. The dependence of jac
z /jac

0
on the

eEdτ/~: ∆ = 0.04 eV (solid line); ∆ = 0.07

eV (dashed line); ∆ = 0.1 eV (dotted line).

In Fig. 2 the dependence of jac
z /j

ac
0 on E is plotted for given ∆. It is noted that

the acoustoelectric current has a peak at some values of E. These peaks decrease with
increasing of ∆, which is similar to the dependence of jac

z /j
ac
0 on E for given ω~q. It is

obtained that when the electric field is negative the current decreases, reaches a minimum
and then rises in a manner similar to that observed during a positive differential conduc-
tivity. When the electric field is positive the current increases, reaches a maximum and
then decreases. This can be attributed to the Bragg reflection at the band edge.

IV. CONCLUSION

In this paper, we have obtained analytical expressions for the acoustoelectric current
in a degenerate electron gas SL in the presence of constant electric field. We have shown
the strong nonlinear dependence of jac

z /j
ac
0 on the applied electric field E The dominant

mechanism for such nonlinear behavior is the periodicity of the electron energy spectrum
along the SL axis. We obtained that a transparency window is formed whenever qd � 1
and ωq � 2∆ sin(qd/2) and jac

z is very small. We attributed the cause to the presence of
the conservation laws and suggested the use of SL as a phonon filter.

The above results indicate that there exists some peaks which disappear in the bulk
semiconductor [32].

The numerical result obtained for a GaAs/AlGaAs SL shows that there exists a
threshold field E0 for which the acoustoelectric current changes direction the threshold
field increases with an increasing ωq. Our result indicates that the acoustoelectric current
exists even if the relaxation time τ of the carrier does not depend on the carrier energy.
This differs from the bulk semiconductor, because in the bulk semiconductor [31] where
the acoustic electric effect vanishes for a constant relaxation time.
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