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Abstract. We present a theoretical study of the effects from symmetric modulation of the en-
velop wave function on quantum transport in square quantum wells (QWs). Within the variational
approach we obtain analytic expressions for the carrier distribution and their scattering in sym-
metric two-side doped square QWs. Roughness-induced scattering are found significantly weaker
than those in the asymmetric one-side doped counterpart. Thus, we propose symmetric modula-
tion of the wave function as an efficient method for enhancement of the roughness-limited QW
mobility. Our theory is able to well reproduce the recent experimental data about low-temperature
transport of electrons and holes in two-side doped square QWs, e.g., the mobility dependence on
the channel width, which have not been explained so far.

I. INTRODUCTION

Realization of conducting channels with high mobility is one of the most challenging
subjects in semiconductor physics and is important for device applications. For improving
device’s performance, it is required not only to increase carrier density but also to increase
carrier mobility. Large mobility enables fabrication of devices of high current drive and
high switching speed. As known, [1] enhanced mobility of two-dimensional (2D) carriers
in quantum wells (QWs) is achieved by means of modulation of the decisive factors such
as electronic structure, scattering mechanisms and confining sources.

So far, various methods for modulation have been proposed. The strain present in
lattice-mismatched QWs is shown [2] to result in a modulation of their electronic struc-
tures that the in-plane effective mass is reduced. Accordingly, there have been several
experimental attempts to grow higher mobility in 2D strained channels for electrons in
Si, [4] holes in GaAs, [5] Ge, [6,7] and Si. [8] Another method combines the effects on Ge
from strain and alloying with Sn to reduce the in-plane and density-of-state masses, [9] so
increasing phonon-limited mobilities of both electrons and holes in Ge. As to scattering
mechanisms, the modulation doping is regarded as a successful technique for reducing the
impurity scattering. [10] As known, [1] the impact of a scattering event in the in-plane
depends strongly on the envelop wave function along the quantization direction, which is
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shaped by confining sources. So, it was suggested [11] that this function is modulated by
insertion of thin barrier layers into the channel for reducing the phonon impact. However,
it should be mentioned that with the quoted methods, additional scatterings are implied,
e.g., alloy disorder [12] and misfit deformation potential, [13, 14] which may cancel their
merits.

Recently, we have shown [15, 16] that asymmetric modulation of the envelop wave
function, e.g., by a single-side doping of QWs, may increase remarkably the impact of
roughness-related scatterings, viz., surface roughness and misfit deformation potential,
so the mobility degraded drastically. Therefore, we suggest a possibility for enhanced
mobility via symmetric modulation of the wave function, e.g., by double-side doping. So
far, there have been a number of experimental reports [17, 19, 21–26] on the transport
properties of double-side doped square QWs based, e.g., on relaxed-GaAs and strained-Ge
channels, however, no theoretical analysis available.

Thus, the aim of this paper is to present a theoretical study of low-temperature
transport in the strained channel of symmetrically-modulated square QWs. The theory
is developed within the variational approach to the band-bending effects from double-
side modulation doping. Further, the theory includes all possible scattering mechanisms,
especially misfit deformation potential.

In Sec. II, we supply the basic equations for calculating the distribution of carriers
along the growth direction. In Sec. III, their mobility in the in-plane is calculated.
Numerical results and comparison with experimental data are presented in Sec. IV.

II. SYMMETRIC TWO-SIDE DOPED SQUARE QW

II.1. Variational Wave Function

To start with, we examine the effect from doping-induced band bending on the
carrier distribution along the growth direction. The doping profile is regarded as symmetric
if there are two doped layers symmetric with respect to the channel center (z = 0), i.e.,
with an equal doping density and an equal doping geometry (doping and spacer layers).
With equal potential barriers the 2S doped square QW is a completely symmetric system.
Therefore, for high enough barriers, we may take a symmetric envelop wave function for
carriers (electrons or heavy holes) in the lowest subband of the QW as follows:

ζ(z)=
{

2B
√

π/Lcos(πz/L)cosh(cz/L), for |z| ≤ L/2
0, for |z| > L/2

(1)

with L as the well width. The normalization requires that πB2[γ1(c) + 1] = 1 with
n = 0, 1, 2, ... as an integer. Where γn(x) with n as an integer is a simple function
defined by Eq. (2) below.

γn(x) =
[

1
x

+
(−1)nx

x2+ n2π2

]
sinhx (2)

Thus, there is a single independent parameter, say c, which is a measure of the band-
bending effect from 2S doping on the carrier distribution.
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III. LOW-TEMPERATURE MOBILITY

Within the linear transport theory, the mobility at very low temperatures are de-
termined by the transport lifetime: µ = eτ/m∗, with m∗ as the in-plane effective mass of
the carrier. The transport lifetime is represented in terms of the autocorrelation function
(ACF) for each disorder by [29]

1
τ

=
1

(2π)2~EF

∫ 2kF

0
dq

∫ 2π

0
dϕ

q2

(4k2
F − q2)1/2

〈|U(q)|2〉
ε2(q)

. (3)

Here q = (q, ϕ) is the 2D momentum transfer due to a scattering event in the x-y plane
(in polar coordinates): q = |q| = 2kF sin(ϑ/2) with ϑ as a scattering angle. The Fermi
energy is given by EF = ~2k2

F /2m∗, with kF =
√

2πps as the Fermi wave number and ps

is the sheet density. The dielectric function ε(q) in Eq. (3) takes account of the screening
of a scattering potential by the carriers. The ACF in Eq. (3), 〈|U(q)|2〉, is defined by
an ensemble average of the 2D Fourier transform of the (unscreened) scattering potential
weighted with an envelop wave function. The carriers are expected to be subject to the
following scattering mechanisms: (i) remote impurity (RI), (ii) surface roughness (SR),
and (iii) misfit deformation potential (DP). The overall lifetime τtot is then determined by
the ones for individual disorders according to the Matthiessen rule,

1
τtot

=
2

τRI
+

2
τSR

+
2

τDP
, (4)

where a factor of 2 is inserted to allow for equal scatterings from two doping layers and
two rough interfaces.

IV. AUTOCORRELATION FUNCTIONS FOR SCATTERING
MECHANISMS

IV.1. Remote Impurity

According to Eq. (3), to evaluate the transport lifetime we ought to derive the ACFs
for the above-quoted scattering sources. First, the ACF for scattering from a random
distribution of remote impurities is supplied in terms of an integral over the doping layer,
[29]

〈|URI(q)|2〉 =
(

2πe2

εLq

)2 ∫ +∞

−∞
dziNI(zi)F 2

R(q, zi)· (5)

Here, NI(zi) is the impurity distribution and FR(q, zi) is the form factor for an impurity
sheet located at the plane z = zi, given by

FR(q, zi) =
∫ +∞

−∞
dz|ζ(z)|2e−q|z−zi|. (6)

We may arrive at the ACF for correlated remote impurities in the form:

〈|URI(q)|2〉c =
(

2πe2

εL

)2
NIL

3

4
FRI(t), (7)
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where the scattering form factor is

FRI(t) =
R2(t)

2
e−2st − e−2dt

t2(t + tc)
· (8)

Here, we introduce a function of the dimensionless momentum transfer t = qL by

R(t) = πB2
[
γ1(c + t/2) + γ1(c− t/2) + 2γ1(t/2)

]
, (9)

with γ1(x) given by Eq. (2), the correlation parameter is given by

qc =
2πe2N2D

I

εLkBT0
, (10)

IV.2. Surface Roughness

Next, we derive the ACF for surface roughness scattering. The weighted potential
in wave vector space for SR scattering from the top interface is given in terms of the local
value of the wave function ζ− = ζ(z = −L/2) by [1]

USR(q) = V0|ζ−|2∆q, (11)

where ∆q is a Fourier transform of the roughness profile, E(c) is the total energy per
particle in the lowest subband, VH(0) is the Hartree potential at z = 0, εL is the dielectric
constant.

V0|ζ−|2 =
[
E(c)−VH(0)

]
ζ2(0)+

π3e2B4ps

2εL

{
1

c2+ π2

[
2c2+ π2

c

[
θ1(2c) + 2θ1(c)

]
+

c

2
[
θ2(2c)+ 2θ2(c)− θ0(2c)− 2θ0(c)

]
− π

2
[
σ2(2c) + 2σ1(2c)

]
− c2+ 2π2

π

×
[
σ2(c) + 2σ1(c)

]
− 2c2+ 3π2

2π

[
σ2(0)+ 2σ1(0)

]]
+ 2
[
∂θ1(c)

∂c
+

∂θ1(0)
∂c

]}
(12)

where we introduce the following auxiliary functions:

θn(x) =
coshx− 1

x
+

x

x2+ n2π2

[
(−1)n coshx− 1

]
(13)

σn(x) =
nπ

x2+ n2π2

[
(−1)n coshx− 1

]
(14)

IV.3. Misfit Deformation Potential

Lastly, it is well known [28,30] that in lattice-mismatched QWs, e.g., of SiGe/Ge/SiGe,
the well layer is subject to some strain. For pseudomorphic QWs, the in-plane component
of the strain field in the well is specified by the misfit defined as

ε‖ =
a‖ − a0

a0
, (15)

where a‖ and a0 are the lattice constants of this layer in the presence and in the absence
of strain, respectively. We supply the 2D Fourier transform of the misfit DP for cubic
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crystals. The scattering potential associated with the top interface (z = −L/2) is given
as follows for electrons: [13, 14]

〈|U (e)
DP(q)|2〉 =

(
π3/2αε‖Ξu(K + 1)∆ΛB2

4L

)2

FDP (t) (16)

and for holes:

〈|U (h)
DP(q)|2〉 =

(
π3/2αε‖∆ΛB2

4L

)2

FDP (t)×
{

3
2
[
bs(K + 1)

]2
(
1 + sin4 ϕ + cos4 ϕ

)
+
(

dsG

4c44

)2 (
1 + sin2 ϕ cos2 ϕ

)}
. (17)

Here, the relevant scattering form factor is given by

FDP(t) = t2e−t
[
γ1(c + t/2) + γ1(c− t/2) + 2γ1(t/2)

]2 1
(1 + λ2t2/4n)n+1

· (18)

Here, Ξu is the DP constant for the conduction band of the well, bs and ds are those for
its valence band. The anisotropy ratio is yielded by

α = 2
c44

c11 − c12
, (19)

the elastic constants by

K = 2
c12

c11
, G = 2 (c11 + 2c12)

(
1− c12

c11

)
, (20)

with cij as elastic stiffness constants of the well.

V. RESULTS AND CONCLUSIONS

In this section, we apply the above-developed theory in order to understand the
properties of low-temperature transport in remote doped square QWs. In particular, we
clarify the advantage of symmetric 2S doping over asymmetric 1S doping. To illustrate,
we introduce the enhancement factor defined by the ratio of the overall mobility in the 2S
doped QW (µ2S

tot) to that in the 1S doped counterpart (µ1S
tot) under the same doping and

interface profiles,

Q(L, ps; Λ) =
µ2S

tot(L, ps;∆,Λ)
µ1S

tot(L, ps;∆,Λ)
. (21)

We now explore the above functional dependence. As an example, the numerical cal-
culations are performed for the p-type Si0.3Ge0.7/Ge/Si0.3Ge0.7 square QW. The overall
mobilities entering in Eq. (21) are estimated in accordance with the Matthiessen rule.
The SR and misfit DP partial mobilities in the symmetric 2S doped QW are calculated by
employing Eqs. (12) and (17), while the relevant mobilities in the asymmetric 1S doped
QW were calculated in Ref. [16]. Where the correlation length is given with Λ = 75 Å,
the enhancement factor Q is plotted versus (a) the well width L for various hole densities
ps = 1011, 1012, 1013 cm−2, and (b) the sheet hole density ps for various well widths
L = 75, 150, 300 Å.
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Fig. 1. Mobility enhancement factor Q for the p-type square QW with a fixed
correlation length Λ = 75 Å vs (a) the well width L for various sheet hole densities
ps given on lines, and (b) the hole density ps for various well widths L given
on lines.

Next, we turn to the electron transport. It should be mentioned that the mobility of
a two-dimensional electron gas (2DEG) in 2S doped square QWs was observed in Refs. [18]
and [27] for the case where the well width and the sheet electron density were both varied.
For 2DEG in the Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As QW, the 4.2 K mobility was reported
in Ref. [18] for the well widths (in units of Å) and the electron densities (in units of 1011

cm−2) as follows: (L, ps) = (75, 5.2), (85, 6.7), (95, 5.7), (110, 6.9). As indicated from
optical measurements, [18] in this relaxed QW with a spacer thickness Ls = 200 Å, SR
scattering is the primary mechanism limiting the electron transport. The numerical result
for 2DEG mobility is displayed in Fig. 2a for a roughness profile ∆ = 2.3 Å, Λ = 27 Å,
where the data and the flat-band mobility are shown for comparison.

At last, for 2DEG in the GaSb/InAs/GaSb square QW, the 10 K mobility was
reported in Ref. [27]. There, the used well widths (in units of Å) and electron densities (in
units of 1012 cm−2) were as follows: (L, ps) = (41.1, 0.9), (53.6, 1.2), (62.3, 1.6), (72.7,
1.5). For this QW of a small misfit ε‖ = 0.006, SR scattering was indicated to dominate
the electron transport. [27, 31] The numerical result for 2DEG mobility is displayed in
Fig. 2b for a roughness profile of ∆ = 3.2 Å, Λ = 15 Å, where the data and the flat-band
mobility are also shown.
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Fig. 2. 2DEG mobility µ in a symmetric 2S doped square QW of
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As vs the well width L with the electron densities
ps varied as given in the text for an interface profile of ∆ = 2 Å, Λ = 15 Å. The
solid and empty circles, and empty squares refer to the mobility in the bent-band
and flat-band models, and the 4.2 K experimental data (Ref. [18]), respectively.
The lines are a guide for the eyes (a). 2DEG mobility µ in a symmetric 2S doped
square QW of GaSb/InAs/GaSb vs the well width L with the electron densities
ps varied as given in the text for an interface profile of ∆ = 3.2 Å, Λ = 15 Å. The
solid and empty circles, and empty squares refer to the mobility in the bent-band
and flat-band models, and the 10 K experimental data (Ref. [27]), respectively.
The lines are a guide for the eyes (b).
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