
Communications in Physics, Vol. 22, No. 1 (2012), pp. 53-58

EFFECT OF THE DIRECT EXCHANGE INTERACTION

BETWEEN MAGNETIC IMPURITIES ON MAGNETIZATION IN

DILUTED MAGNETIC SEMICONDUCTORS

VU KIM THAI
Institute of Physics, VAST

LE DUC ANH
Hanoi National University of Education

HOANG ANH TUAN
Institute of Physics, VAST

Abstract. We consider a model of III-V diluted magnetic semiconductors where both of the ex-

change interaction between carrier and impurity spins, and the direct exchange interaction between

magnetic impurities are taken into account. The magnetization as a function of temperature for

a wide range of model parameters is calculated and discussed. We show that for a degenerate

carrier system the suppression of the magnetization is sensitive to the antiferromagnetic coupling

constant and the impurity concentration.

I. INTRODUCTION

The DMS combine ferromagnetism with the conductivity properties of semiconduc-
tors. Therefore, they are ideal materials for applications in spintronics where not only the
electron charge but also the spin of the charge carrier is used for information processing.
For instance, they allow to resolve the conductivity mismatch problem which hinders a
high polarizability of injected electrons in a ferromagnetic metal/semiconductor junction
[1].

One prominent DMS is Ga1−xMnxAs (typical x ≈ 1 − 10%) with the Mn ions
substitutionally replacing Ga at the cation sites. Mn ions in Ga1−xMnxAs serve a dual
purpose, acting both as acceptors and as magnetic impurities, whose spins align at the
ferromagnetic transition [2]. Since it is widely believed that the carriers are mediating fer-
romagnetic interaction, ferromagnetism in DMS is called carrier-induced ferromagnetism
and several theories addressing the mechanism are already available [3]. Some mean-field
theories, based on the RKKY interaction [4-5] have succeeded in explaining some charac-
teristic and transport properties of DMS’s. However, further results show that for a low
doping level the RKKY interaction between localized spins is insufficient [6-7]. In this
case the impurity band model, where p holes move around interacting with localized spins
at Mn sites through the antiferromagnetic exchange interaction, is a widely used model
for (III,Mn)V-type DMS [8-9]. In almost theoretical works above, however, the effects of
super-exchange interaction between d-electrons in Mn have been neglected.
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From the application point of view, the low Curie temperature of the investigated
DMS represent a serious problem, and many efforts have been devoted to find DMS with
higher Tc. On the other hand, the temperature dependence m(T ) of the spontaneous
magnetization possesses many important characteristics, such as concavity/convexity of
the curve, value of saturation magnetization, etc., so its study has a very high potential
for elucidating the physics behind DMS ferromagnetism in real systems. The purpose
of this paper is to calculate the magnetization as a function of temperature for a wide
range of model parameters including the antiferromagnetic coupling constant between
magnetic impurities. We show that for a degenerate carrier system the suppression of the
magnetization is sensitive to the antiferromagnetic coupling constant and the impurity
concentration.

II. THE MODEL AND FORMALISM

We consider the following model of III-V DMS A1−xMnxB where both of the ex-
change interaction between carrier and impurity spins, and the direct exchange interaction
between magnetic impurities are taken into account

H =
∑

ijσ

tija
+
iσajσ +

∑

i

ui − J
∑

<ij>

~Si
~Sj, (1)

where ui is either u
A
i or uMi depending on the ion species occupying the i site:

ui =







EA
∑

σ
a+iσaiσ, i ∈ A

EM
∑

σ
a+iσaiσ −∆

∑

σ
a+iσaiσ(σSi), i ∈ Mn.

(2)

Here a+iσ(aiσ) is the creation (annihilation) operator for a carrier with spin σ at i site;
~Si denotes the spin of localized impurity at i site ; ∆ is the effective coupling constant
between the localized spin and itinerant spin; J is the coupling constant between the
neighboring localized impurity spins, which depends on their distance and for the AF
exchange interaction case J < 0. To consider the effect of the direct exchange interaction
between magnetic impurities on magnetization, we simply the problem, dividing equation
(1) into the impurity term and the itinerant carrier term.

Himp = −
∑

i

hSz
i − J

∑

<ij>

Sz
i S

z
j , (3)

Hcarr =
∑

ijσ

tija
+
iσajσ +

∑

i

ui, (4)

where h is the field induced by the polarization of the carrier spins. In this study we treat
the localized spin as the Ising spin (Sz

i = ±1) and treat the Himp in the molecular field
approximation as Sz

i S
z
j =< Sz

i > Sz
j+ < Sz

j > Sz
i − < Sz

i >< Sz
j >. Within this mean

approximation, the Hamiltonian (3) becomes

HMF
imp = NxJγm2/2−

∑

i

Sz
i (h+ Jγm), (5)
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where N is the number of lattice sites, x is Mn density, m =< Sz
i > refers to the average

magnetization per lattice site, γ is the number of the neighboring localized impurity spins
located around a given one. With simplified Hamiltonian (5), we obtain the partition
function

Zimp = (e−βJγm2/2
∑

Sz=±1

eβ(h+Jγm)Sz

)Nx, (6)

where β = 1/kBT . The free energy for the localized spin system is then given as

Fimp = −kBT lnZimp = NxJγm2/2−NxkBT ln(
∑

Sz=±1

eβ(h+Jγm)Sz

) (7)

We apply CPA [8,10] to the Hamiltonian (4). In CPA the carriers are described as inde-
pendent particles moving in an effective medium of spin-dependent coherent potentials.
The coherent potential Σσ (σ =↑, ↓) is determined by demanding the scattering matrix
for a carrier at an arbitrarily chosen site embedded in the effective medium vanished on
average. By using a bare semicircular noninteracting density of states (DOS) with half-

bandwidth W : ρ0(z) = 2
πW 2

√
W 2 − z2 we obtain the following equation for the Green

function for a given magnetization m

Gσ(ω) =
1− x

ω − wGσ(ω)− EA
+

x(1 +m)/2

ω − wGσ(ω)−EM +∆σ
+

x(1−m)/2

ω − wGσ(ω)− EM −∆σ
, (8)

where w = W 2/4 and σ = ±1.
The Eq. (8) is easily transformed into a quartic equation for Gσ(ω) and it is solved ana-
lytically by using Farrari method. Throughout this work, we assume that the carriers are
degenerate. Then the carrier density and energy can be expressed as

n =

µ
∫

−∞

(ρ↑(ω) + ρ↓(ω))dω, , (9)

Ecarr(m) =

µ
∫

−∞

ω(ρ↑(ω) + ρ↓(ω))dω, (10)

where µ is the chemical potential and ρσ(ω) = − 1
π=Gσ(ω) is the DOS with spin σ . The

free energy per site of the system (1) at temperature T is given as

F (m) = Ecarr(m) + hmx+ xJγm2/2− xkBT ln(
∑

Sz=±1

eβ(h+Jγm)Sz

). (11)

By minimizing F with respect to m we obtain the following equation for h

h = −1

x

dEcarr(m)

dm
. (12)

By using the Weiss molecular field theory, each impurity spin feels an effective field h+Jγm
and thus we have

m = tanhβ(h+ Jγm). (13)

Equations (8)-(10), (12) and (13) form a set of self-consistent equations for µ and m for a
given set of parameter values x, n,∆, J, EA, EM and T .



56 VU KIM THAI, LE DUC ANH, AND HOANG ANH TUAN

III. NUMERICAL RESULTS AND DISCUSSION

Through this work we take EA as the origin (= 0) and W as the unit of energy,
γ = 6 for simple cubic lattice. Before numerical solving the equations (12) -(13), let us
briefly consider limiting case. In the absence of the direct exchange interaction between
magnetic impurities, setting J = 0,∆ = −0.4 and EM = −0.3 in (13) we reproduce the
CPA result for the magnetization of Ga1−xMnxAs obtained by Takahashi et al [11]. In
addition, since tanhx is an increasing function from Eq. (13) it is easily seen that taking
into account the antiferromagnetic interaction between localized spins (J < 0) leads to
decreasing the magnetization m(T ).
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Fig. 1. Temperature dependent magnetization for various antiferromagnetic cou-
plings for x = 0.05, n = 0.025, EM = −0.2, ∆ = −0.3.

We turn now to present our numerical results. In Fig. 1, we show our calculated
magnetization of the local moments as a function of temperature for different values of J =
0,−4,−8 and −12.10−4, for x = 0.05, n = 0.025, EM = −0.2 and ∆ = −0.3. One can see
that the ferromagnetism is always preferable at low temperatures and for fixed x, n,EM ,∆
and T the magnetization decreases with increasing |J |. This constant depends on the
distance between two neighbour impurities, so it depends on the impurity concentration
x. Unfortunately, as noted in [12], non of J neither x, n, EM of our model is directly
experimentally measurable. That is why a detailed comparison between our result and
experiment cannot be done. Here we choose the magnitude of J in the same order as in
Ref.[12]. These results indicate that the neighboring magnetic impurities not only couple
anti-ferromagnetically to each other but also reduce the carrier-induced ferromagnetic
interaction.

In Fig. 2, the temperature dependence of magnetization is plotted for x = 0.05, n =
0.025, EM = −0.2, J = −4.10−4 and for several values of ∆ = −0.3,−0.4 and −0.6.
Here, the fact that our m(T ) and Tc increases with increasing |∆| for all ∆ is due to
the Weiss mean field theory. Fig. 3 displays the change of the magnetization with the
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Fig. 2. Temperature dependent magnetiza-

tion for various effective coupling constants

for x = 0.05, n = 0.025, EM = −0.2, J =

−4× 10−4.

Fig. 3. Magnetization for different values of

nonmagnetic potential for x = 0.05, n =

0.025, ∆ = −0.3, J = −4.10−4.

change of nonmagnetic potential. Comparing with the curves in Fig. 2 it is clear that EM

simply renormalizes the effective value of ∆. Fig. 4 and Fig. 5 show the magnetization
m(T ) for various value of x and n. We find that the magnetization is sensitive to the
impurity concentration x and m(T ) is maximized for the carrier density roughly half of
the concentration of localized spins (n/x ≈ 0.5) which agrees with [9,12]. However, unlike
Ref. [12] where the magnetization curve is concave for low carrier densities, our curve is
convex for all values of n.
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Fig. 4. Temperature dependent magnetiza-

tion for various magnetic impurity concen-

trations for n = 0.02, EM = −0.3, ∆ =

−0.3, J = −4.10−4.

Fig. 5. Magnetization for various values of

carrier density for x = 0.05, EM = −0.2, ∆ =

−0.3, J = −4.10−4.
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To summarize, applying the CPA and mean-field approximation we have studied the
effects of the direct exchange interaction between magnetic impurities on magnetization
in DMS (III,Mn)V-type. The magnetization as a function of temperature for a wide range
of model parameters is calculated and discussed. We have shown that for a degenerate
carrier system the suppression of the magnetization is sensitive to the antiferromagnetic
coupling constant and the impurity concentration. This result also implies that the super-
exchange interaction between d-electrons in Mn has a tendency to reduce Tc which will be
investigated in the near future.
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