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FREE ENERGY DENSITY FOR GAUGE BACKGROUND FIELDS
AT FINITE TEMPERATURE

PHAN HONG LIEN
Military Academy of Technology

Abstract. The effective action and background field method have been applied to investigate free
energy density for non-Abelian gauge theory at finite temperature, in which quantum corrections
are included and certain symmetries of generating functional are restored. Renormalization is
also considered for the gauge field. We give result for the one loop free energy density of gauge
theory at high temperature and non-zero chemical potential, correcting a result previously at zero
temperature and density. Some results are extended up to two loops.

I. INTRODUCTION

The finite temperature effective action and its thermal potential is known as a
method which provides a general approximation beyond one loop and higher free energy
density, in the perturbative as well as non-perturbative sector [1]. In particular, it plays an
important role in the investigation of cosmological phase transition [2] and non-equilibrium
phenomena [3]. However, the effective potential of gauge theories may fail to be gauge
because it is against gauge transformation and generally does depend on the ξ-gauge [3,
4]. Therefore, it is worth to mention that the background field method allows one to fix a
gauge, thereby compute quantum effects without losing explicit gauge invariance [5, 6].

Our main aim is to present in detail the effective action at high temperature for
general non-Abelian theory by background gauge field method. In this connection, it is
possible to consider our work as being complementary to result previously at zero tem-
perature [6].

This paper is organized as follows. In Sec. II, the background field method is pre-
sented for general fermion-boson interacting system. Section III is devoted to effective
potential at finite temperature for background fields. In Sec. IV the dimensional regu-
larization at finite temperature is presented for some divergent integrals. We obtained
the result for one loop free energy density and renormalization of the gauge field. The
discussion and conclusion are given in Sec. V.

II. FORMALISM

II.1. Background field method

Let I
(
Ψ̄,Ψ,Φ, Aµ

)
be the action of fermion - boson interacting system, where Ψ̄,Ψ

are multiplet of fermion fields, Φi(i = 1, 2 . . . n) are components of the scalar fields, Aµ -
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gauge fields and ω, ω∗ - ghost fields.

I =
∫
dxL0(x) (1)

where Lagrangian density reads

L0 =− 1
4
F a

µνF
aµν + Ψ̄(iγµDµ −GiΦi)Ψ

+ [(Dµ − iµδµ0)Φi]
+ [

(Dµ − iµδµ0)Φi

]
−m2Φ+

i Φi − λ(Φ+
i Φi)2

− 1
2ξ

(
∂µAa

µ

)2 − ∂µω
∗
a∂

µωa + fabc(∂µω
∗
a)A

b
µω

c.

(2)

Here µ is chemical potential, Gi and λ are coupling constants, λ > 0
Dµ ≡ ∂µ − iT aAa

µ,

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + fabcA

b
µA

c
ν ,

where Ta are group generators, fabc are structure constants which satisfy Lie algebra

fabcfdbc = g2CAδad (3)

TrTaTb = g2CF δab (4)

with CA is numerical constant of gauge group, CA = N for SU(N), CF is representation
of this group.

It is well known, the Lagrangian (1) is invariant under non-abelian gauge transfor-
mation.

Ψ(x) → UΨ(x),

Aµ(x) → UAµ(x)U+ +
i

g
(∂µU)U+,

Fµν(x) → UFµν(x)U+

(5)

where U is unita transformation of gauge parameters

U = e−iθ(x), θ(x) = θa(x)T a, Aµ(x) = Aa
µ(x)T a.

In the generalized ξ - gauge, the Lagrangian (1) is also renormalizable (if the matter
Lagrangian part is).

In the non - abelian theory, explicit gauge invariance is normally lost when quantum
correction are included. The background field method allows us to fix gauge, hence inves-
tigate quantum effects, so that certain symmetries of generating functional are restored.

The fields are shifted by

Aµ → Aµ +A′µ; 〈0|Aµ|0〉 = const, 〈0|A′µ|0〉 = 0, (6)

Φi → Φi + Φ′
i; 〈0|Φi|0〉 = φ0i, 〈0|Φ′

i|0〉 = 0, (7)

Ψ → Ψ + Ψ′; 〈0|Ψ|0〉 = 〈0|Ψ′|0〉 = 0, (8)

ωa → ωa + ω′a; 〈0|ωa|0〉 = 〈0|ω′a|0〉 = 0, (9)

where Aµ,Φ,Ψ,ωa are the background fields, and A′µ,Φ
′,Ψ′, ω′a are the quantum fields,

which are variables of integration in the functional integral. The gauge is chosen (the
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background field) which breaks the gauge invariance in terms of the Aµ,Φ,Ψ,ω fields.
Background field gauge is assured by coupling external sources only to the A′µ,Ψ

′,Φ′, ω′

fields. Thus, quantum calculations can be performed, yet explicit gauge invariance in the
background field variable is not lost.

It is shown [6] that the original gauge transformation is equivalent to formal com-
bined transformations

δAa
µ = ∂µθ

a − fabcθ
bAc

µ, δA
′a
µ = −fabcθ

bA
′c
µ , (10)

δΨ = iθaT aΨ, δΨ′ = iθaT aΨ′, (11)

δωa =− fabcθ
bωc, δω′a = −fabcθ

bω′c (12)

so that

δ(Aa
µ +A

′a
µ ) = ∂µθ

a − fabcθ
b(Ac

µ +A
′c
µ ),

δ(Ψ + Ψ′) = iθaT a(Ψ + Ψ′),

δ(ωa + ω′a) =− fabcθ
b(ωc + ω′c)

(13)

If we choose the gauge fixing function F a which transforms as a background covari-
ant derivation

F a = D̄µA
′a
µ , (14)

where D̄µϕa = ∂µϕa + fabcAbµϕc for any field ϕa, then

δF a = −fabcθ
bF c; δ(F qF a) = 0. (15)

In the scalar sector of non-Abelian theory, the Lagrangian part

LB = (DµΦi)+(DµΦi)+iµ
[
Φ+

i (D0Φi)− (D0Φi)+Φi

]
+(µ2−m2)Φ+

i Φi−λ(Φ+
i Φi)2 (16)

is invariant under the local transformation

Φi(x) −→ e−iθ(x)Φi(x) (17)

It leads to a new ground state and the shift Φi(x) by real fields Φ′
i(x), i.e

Φ0i = 〈Φi〉 =

√
µ2 −m2

2λ
=

v√
2
−→ 1√

2
(v + Φ′

i(x)). (18)

Hence symmetry is broken if µ2 > m2.
Since the potential only depends on [v+ Φ′

i(x)]
2, it is clearly that θ(x) are massless

fields (Goldstone bosons), i.e 〈θ(x)〉 = 0. In general, Goldstone bosons don’t appear in
spectrum of theory in which the symmetry is local.

The formal combined transformation (10) - (12) leave invariance of the modified
complete Lagrangian

Lmod = LAF + LB + Lgf + Lghost (19)
where

LAF =− 1
4

(
F a

µν − D̄µA
′a
ν − D̄νA

′a
µ + fabcA

′b
µA

′c
ν

)2

−Ψ′
[
iγµ

(
D̄µ − iT aA

′a
µ

)
+M

]
Ψ′ − giΨ̄′Φ′

iΨ
′.

(20)
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Here gi =
√

2Gi,M = giv is the mass of fermion in the presence of a background field Φi.

LB =
1
2
D̄µΦ′

iD̄
µΦ′

i +
1
2
M2

ijΦ
′
iΦ

′
j

+
1
2
M2

abA
′a
µ A

′b
µ + vΦ′

iA
′a
µ A

′b
µT

aT b − λvΦ
′3
i −

λ

4
Φ

′4
i .

(21)

with M2
ab = g2v2TaTb is the mass of vector boson, M2

ij = δij(µ2 − m2) − λ
2Φ′

iΦ
′
j is the

diagonal mass matrices of scalar bosons.

Lgf =− 1
2ξ
F aF a = − 1

2ξ

(
D̄µA

′a
µ

)2
, (22)

Lghost =−
(
D̄µω

′
a

) (
D̄µω′a − fabcω

′
bA

′µ
c

)
, (23)

where

D̄µΨ′ = ∂µΨ′ − iT aAa
µΨ′, (24)

D̄µΦ′
i = ∂µΦ′

i − iT aAa
µΦ′

i, (25)

D̄µA
′a
ν = ∂µA

′a
ν + fabcAb

µA
′c
ν (26)

D̄µωa = ∂µωa + fabcAbµω
′
c,

D̄µω
∗
a = ∂µω

∗
a + fabcAbµω

′∗
c

II.2. Renormalization

The formal gauge invariance impose the constrains on divergence occurred in the
theory, but the background gauge transformations (10) - (12) conserver gauge invariance
in path integration.

Adding to the Lagrangian (1) a counterterm

δL =− 1
4
LAF

a
µνF

aµν + LΨΨ̄γµDµΨ− LiGiΨ̄ΦiΨ

+ LΦ

[
(DR

µ − iµδµ0)ΦR
]+ [

(DµR − iµδµ0)ΦR
]

− Lmm
2Φ+

i Φi − Lλλ(Φ+
i Φi)2 − Lω(D̄µω

∗
a)(D

µωa)

(27)

so that renormalized Lagrangian takes the form

LR = L0 + δL =− 1
4
F aR

µν F
aµνR − Ψ̄RγµDµΨR − gR

i Ψ̄RΦR
i ΨR

+
(
DR

µ ΦR
i

)+ (
DµRΦR

i

)
+ iµ

(
Φ+R

i ∂0ΦR
i − ΦR

i ∂0Φ+R
i

)
+

(
µ2 −m2

R

)
Φ+R

i ΦR
i − λR

(
Φ+R

i ΦR
i

)2
− 1

2ξ
(
DR

µA
0R
µ

)2

−
(
DR

µ ω
∗R
a

) (
DµRωR

a

)
.

(28)
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Hence, its easily to define the renormalized fields

AaR
µ =

√
1 + LAA

a
µ ΦR

i =
√

1 + LΦΦi

ΨR =
√

1 + LΨΨ vR =
√

1 + LΦv

ωR
a =

√
1 + Lωωa ω∗Ra =

√
1 + Lωω

∗
a

(29)

and the renormalized masses, the background field strength tensor

MR =GR
i v

R; m2
R = m2 (1 + Lm)

1 + LΦ
, (30)

F aR
µν =∂µA

aR
ν − ∂νA

aR
µ + fR

abcA
bR
µ AcR

ν . (31)

The covariant derivation are taken in renormalized sense
DR

µ ΨR = ∂µΨR − iTR
a A

aR
µ ΨR

DR
µ ΦR

i = ∂µΦR
i − iTR

a A
aR
µ ΦR

i

DR
µA

aR
ν = ∂µA

aR
ν + fR

abcA
bR
µ AcR

ν

DR
µ ω

R
a = ∂µω

R
a + fR

abcA
R
bµω

R
c

DR
µ ω

∗R
a = ∂µω

∗R
a + fR

abcA
R
bµω

∗R
c .

(32)

The renormalized structure constants and group generators are determined by

fR
abc =(1 + LA)−1/2 fabc, (33)

TR
a =(1 + LA)−1/2 Ta, (34)

and the coupling constants are renormalized by

λR = λ (1 + Lλ) (1 + LA)−2 , (35)

GR
i = gi(1 + Li)(1 + LΨ)−1(1 + LΦ)−1/2, (36)

gR = g (1 + LA)−1/2 . (37)

III. THE EFFECTIVE ACTION FOR BACKGROUND FIELDS AT
FINITE TEMPERATURE

The generating functional for the background fields is defined by
Zβ [η, η̄, Ji, Jµ, Ja, J

∗
b ] ≡ exp iWβ [η, η̄, Ji, Jµ, Ja, J

∗
b ]

=
∫

[dΨ̄][dΨ][dΦ][dA][dω][dω∗] exp i
{∫

dxLmod(x) + µΨ̄γ0Ψ
}

+
∫
dx

[
η̄Ψ + Ψ̄η + JiΦi + JµAµ + J∗aωa + Jbω

∗
b

]
.

(38)

The integration has to be performed over antiperiodic Grassman fields

Ψ(0,x) = −Ψ(β,x)

and periodic bosonic fields
B(0,x) = B(β,x) with B = (Φ,Aµ),
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where β = 1
kT , we set Boltzman constant k = 1.

If we complete the background gauge transformation with transformation for the
external sources

δη = iθaT aη δJa
µ = fabcθ

bJc
µ,

δη̄ = iη̄θaT a δJa = fabcθ
bJc,

δJi = iθaT aJi δJ+
a = fabcθ

bJc+,

(39)

then the thermal mean values of corresponding fields are given by

δWβ

δη̄(x)
= 〈Ψ(x)〉β = ψ(x);

δWβ

δη(x)
=

〈
Ψ̄(x)

〉
β

= ψ̄(x),

δWβ

δJi(x)
= 〈Φi(x)〉β = φi(x);

δWβ

δJaµ(x)
=

〈
Aa

µ(x)
〉
β

= Aa
µ(x),

δWβ

δJ∗a (x)
= 〈ωa(x)〉β = ωa(x);

δWβ

δJb(x)
= 〈ω∗

b(x)〉β = ω∗b (x).

(40)

The thermal propagators of matter (spinor and scalar) gauge and ghost fields are
determined by

δ2Wβ

δη̄(x)δη(y)
=S(x, y);

δ2Wβ

δJi(x)δJk(y)
= ∆ik(x, y),

δ2Wβ

δJa
µ(x)δJb

ν(y)
=Gab

µν(x, y);
δ2Wβ

δJa(x)δJb(y)
= Dab(x, y).

(41)

The effective action at finite temperature is defined normally as a Legendre trans-
formation of Wβ

Γβ

[
ψ, ψ̄, φ,Aµ, ω, ω

∗] =Wβ [η, η̄, Ji, Jµ, J
µ
a , Ja, J

∗
b ]

−
∫
dx

[
η̄ψ + ψ̄η + Jiφi +AµJ

µ
a + J∗aωa + Jbω

∗
b

]
.

(42)

The stationary condition for physical processes which correspond to vanishing ex-
ternal sources requires

δΓβ

δψ

∣∣∣
η̄=0

=
δΓβ

δψ̄

∣∣∣
η=0

= 0;
δΓβ

δωa

∣∣∣
J∗

a=0
=
δΓβ

δω∗a

∣∣∣
Ja=0

= 0

δΓβ

δφi

∣∣∣
Ji=0

=Ji − ψ̄giψ − (Dµ − iµδµ0)(Dµ − iµδµ0)φi −m2φi − 2λφi(φkφk) = 0

δΓβ

δAa
µ

∣∣∣
Jµ

a =0
=Ja

µ − ψ̄γµT
aψ + ∂νF a

νµ − fabcAbνF
νµ
c +

1
2
T aAbµT

bφ2
i = 0

(43)

It is shown [7] that the effective action in which the replacement (10)-(12) have been
manifested just is original effective action Γβ

[
ψ, ψ̄, φ,Aµ, ω, ω

∗] evaluated at mean values
Aµ, ψ, φ and ω, ω∗. It is very important to realize that under the formal combined gauge
transformation (10)-(12) the effective action is a gauge invariant functional if no external
lines A′µ,Ψ

′,Φ′.
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µ

igi igi

Ψ Ψ

φ

φ

igT a igT a

Ψ Ψ

Aa
µ

Aa
µ

igT a
Φ Φ

Aa
µ

Ab
µ

Aa
µ

ωc

a)

ig ig

ψ

ψ

A
a
µ A

a
µ A

b
µ

A
a
µ

Ac
µ

Ac
µ

A
b
µ

A
a
µ

ωc

ωc

b)

Fig. 1. One loop graphs for background fields which are represented by bold
external lines.
a) The internal lines correspond to quantum fields.
b) Three last diagrams are quadratic contribution in background field Aa

µ

Now we consider the effective action in background field for which Aa
µ and Φi are

constant, and Ψ = Ψ̄ = ω = ω∗ = 0. For such a background the modified Lagrangian is
given by (19) - (24). The effective action is calculated from the part of the action that is
quadratic in quantum fields A′µ,Φ

′,Ψ′ and ω′, ω′∗ over which one integrated

Iquad =
∫
dxLquad =

∫
dx

[
−1

4

(
D̄µA

′a
ν − D̄νA

′a
µ

)2
− 1

4
F a

µνfabcA
′b
µA

′c
ν

]
−

∫
dxΨ̄′

(
γµDµ + µγ0 +M + giφ

′
i

)
Ψ′

+
∫
dx

[
1
2

(
Dµφ

′
iD

µφ′i −M2
ijφ

′2
i

)
− λ

4
φ

′4
i

]
−

∫
dx

[
1
2ξ

(
D̄µA

′a
ν

)2
+

(
D̄µω

′∗
a

) (
D̄µω

′
a

)]
=

1
2

∫
dxdyA

′a
µ (x)Dab

µν(x, y)A
′b
ν (y)−

∫
dxdyΨ′(x)Dab(x, y)Ψ′(y)

+
1
2

∫
dxdyφ′i(x)Dik(x, y)φ′k(y)−

∫
dxdyω

′∗
a (x)Dab(x, y)ω′b(y)

(44)
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By using the Fourier transformation D(k) =
∫
dxeik(x−y)D(x − y) the matrices in

(44) are given by

Dab
µν(k) =gµν

[ (
−ikρδca + fcdaA

d
ρ

) (
−ikρδcb + fcebA

e
ρ

)
−

(
−ikνδca + fcdaA

d
ν

) (
−ikµδcb + fcebA

e
µ

)
+ F c

µνfcab

]
+ gµνδijΦi(k)Φj(k)T aT b + ε terms,

(45)

with F a
µν = fabcA

b
µA

c
ν .

D(k) =(−ik/− iT aA/a
µ/ +M + µγ0) + ε terms, (46)

Dab(k) = (−ikρδca + fcdaAdρ) (ikρδcb + fcebA
ρ
e) + ε terms, (47)

Dij(k) =
(
−ikµ − iµ− iTaA

a
µ

)
i

(
ikµ + iµ+ iTaA

a
µ

)
j
−m2

ij −
λ

2
φiφj + ε terms, (48)

In momentum representation, the effective action takes the general form

Γβ

[
ψ, ψ̄, φ,Aµ, ω, ω

∗] = I
[
ψ, ψ̄, φ,Aµ, ω, ω

∗]− i

2
TrlnGab

µν(k)

+ iT rlnS(k)− i

2
Trln∆ij(k) + iT rlnDab(k) +

∞∑
n=2

n loops 1PI
(49)

where the action I
[
ψ, ψ̄, φ,Aµ, ω, ω

∗] is given in (44) - (48). The Trace, the logarithm are
taken in functional sense, and the free propagators are given by

S−1(k) = k/−M − iε; M = gν, (50)

∆−1
ij (k) = δijk

2 −M2
ij − iε; M2

ij = (µ2 −m2)δij −
λ

2
φiφj , (51)

[G0ab(k)]
−1
µν =

(
M2

ab − k2δab

) [
kµkν

k2
− gµν

]
+

[
δab

k2

ξ
−M2

ab

]
kµkν

k2
, (52)

D−1
0ab(k) = δab(k2 − iε), Mab =

1
2
δabgν. (53)

The higher loop graphs for background fields are represented in Fig. 2.

IV. ONE LOOP FREE ENERGY DENSITY AT T 6= 0

The symmetry is broken if Eqs. (40) - (41) has non-vanishing solutions Aµ 6= 0, φ 6=
0. For 〈Aµ〉β = δ0µA

0
µ, 〈Φ〉 = φ0 the effective potential is defined by

Vβ = −
Γβ

β
∫
dx

(54)

It is just thermal free energy density, which concerns with the restoration of sym-
metry at T 6= 0.
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φ Aµ Aµ ω

Φ Φ Φ Aa
µ Aa

µ Ab
µ

ωa ωb
a)

Ψ

Ψ

Φ

Φ

Aµ

Aµ

Aµ

Aµ

b)

Fig 2. Higher loop graphs for background field gauge
Fig. 2. Higher loop graphs for background field gauge: a) Two loop graphs; b)
Three loop graphs

Starting from (49) and (54) the one loop thermal effective potential for the back-
ground fields in momentum space reads

V
1 loop
β = −

∫
d4k

(2π)4
[
itrlnS(k)− 1

2
trln∆ij(k)−

1
2
trlnGµν(k) + itrlnDab(k)

]
(55)

here ”tr” denotes usual traces of finite matrices.
The proper way to regularize the theory at finite temperature in d = 4− 2ε dimen-

sions is apply the ”imagine time” formalism, where all four momenta are Euclidean with
discrete Matsubara frequencies k4 = iωn

ωn =

{
2nπT for bosons
(2n+ 1)πT for fermions

(56)

i.e. ∫
d4k

(2π)4
= i

∫
d4kE

(2π)4
→ iT

∞∑
n=−∞

∫
d3k

(2π)3
=

∑
k

∫
. (57)

In d = 4− 2ε dimensions it is replaced by∑
k

∫
→ η2εT

n=+∞∑
n=−∞

d3−2ε

(2π)3−2ε
(58)

and then perform ε→ 0 limit. Here η is renormalization scale.
From (44) - (49) we arrive at the expression for the effective potential

Vβ =Vcl −
∑

k

∫ [
ln(k2 +M2)− ln(k2 +M2

ij)− ln(k2 +M2
ab)

]
+ ig2J

(
11
12
N − 1

6
NF +

1
12
NB

) ∫
dxF a

µνF
aµν +

i

8
g2K +

i

2
giP

(59)
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where NF and NB are fermionic and bosonic number in defining representation. The third
term calculated from (45) -(48) is one loop contribution in the background gauge field.
Two last terms are bosonic contribution to Vβ and the fermionic self energy. Here J,K, P
are divergent integrals.

J =
∫

d4k

(2π)4
1

(k2 − iε)2
→

∑
k

∫
1

(k2)2
(60)

K =
∫

d4k

(2π)4
1

(k2 −m2 − iε)2
→

∑
k

∫
1

(k2 +m2)2
(61)

P =
∑

k

∫ ∑
p

∫
1

(p2 +M2
1 )(k2 +M2

2 )
[
(k + p)2 +m2

3

] . (62)

For massless bosons and ghosts, we have

J =
∫

d4k

(2π)4
1

(k2 − iε)2
→

∑
k

∫
1
k2

= η2ε

∫
d3−2εk

(2π)3−2ε

1
k2

+ 2η2εT

∞∑
n=1

∫
d3−2εk

(2π)3−2ε

1
[(2πnT )2 + k2]2

=
1

(4π)2

[
1
ε

+ 2ln
η̄

4πT
+ 2γE

]
+ 0(ε),

(63)

where η2 = eγE η̄2

4π (P.Arnold and C.Zhai, 1994 [8]).
In the case m 6= 0, the integral contributed to one loop potential takes the form

I(m) =
∫

d4k

(2π)4
1

k2 −m2 − iε
→

∑
k

∫
1

k2 +m2
. (64)

Using the well - known result [9]

1
2
Trln(k2 −m2) ≡1

2

∑
k

∫
ln

[
−(πnT )2 − k2 −m2

]
'− π2T 4

90
+
m2T 2

24
− m3T

12π
− m4

64π2
C,

(65)

where C = 1
ε + 2ln η̄

4πT + 2γE , we can evaluate the integrand at high temperature.

I(m) ≡ 1
m

∂

∂m

[
1
2
Trln(k2 −m2)

]
=
T 2

12
− mT

4π
+
m2C

(4π)2
. (66)

It is straightforward to extend this result to (61), K(m) = I2(m), where m2 is
replaced by thermal mass M2

K(M) = const− g2

24π
MT 3 +

1
(4π)2

g2M2T 2

− 1
(4π)2

g2M2T 2

(
1
ε

+ 2ln
η̄

4πT
+ 2γE

)
.

(67)
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Thus, there is 1/ε term, i.e UV divergence in both J , K. The P integral in (62)
corresponds to the sun diagram [10]

P b(m1,m2,m3) = =
T 2

(4π)2

[
1
4ε

+ ln
η̄

m1 +m2 +m3
+

1
2

]
+ 0(m, ε). (68a)

When fermions are included, it is vanished

P f (M1,M2,m) = = 0(ε). (68b)

The total temperature dependent part of the loop effective potential is the sum of
terms (63)-(68). The one loop thermal free energy density takes the form

Vβ =− 1
2
(µ2 −m2)φ2 +

λ

4
φ4 − 1

2
δabM

2
abA

2
0µ −

π2T 4

90

(
NB +

7
8
NF

)
+
T 2

24

{
(µ2 −m2 − λ

2
φ2) + 3TrM2

ab +
1
2
Tr [γ0(M + µγ0)γ0(M + µγ0)]

}
− T

12π
(
M3 + δabM

3
ab

)
− g2T 3

48× 4π
(M + δabMab + 2M) (69)

+
g2

(4π)2

(
11
12
N − 1

6
NF +

1
12
NB

) (
1
ε
− 2ln

η̄

4πT
+ 2γE

) ∫
dxF a

µνF
aµν .

Hence, it is easily to derive the thermal masses, e.g in the first approximation the scalar
thermal mass is

M2 = (µ2 −m2) +
λ

24
T 2 − λ

2
φ2. (70)

a) b)

Fig. 3. Plot for the effective potential described in Eq.(69) with g = 10 GeV,
λ = 0.1, T = 0÷ 200 MeV. a) µ/m = 0.5 ; b) µ/m = 1.2
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Finally, the infinite factor LA is determined from (27), (59) and (63)

LA =4ig2J

(
11
12
N − 1

6
NF +

1
12
NB

)
=− g2

(2π)2

(
11
12
N − 1

6
NF +

1
12
NB

) (
1
ε

+ 2ln
η̄

4πT
+ 2γE

)
+ 0(g4).

(71)

The renormalized coupling gR in (37) is given by

gR = g

[
1 +

g2

4π2

(
11
12
N − 1

6
NF +

1
12
NB

) (
1
ε

+ 2ln
η̄

4πT
+ 2γE

)]
+ 0(g4). (72)

Note that in non-Abelian theory, the physical coupling gR increases due to quantum
corrections at high temperature, as well as at zero temperature and chemical potential. It
is just the difference with the Abelian theories.

V. DISCUSSION AND CONCLUSION

In the above sections we have presented in detail the background field method and
its effective action for the non-Abelian theory at finite temperature. The renormalization
for the background field gauge is manifested at T 6= 0. Much interest is focused only
on the leading correction to the one loop free energy density. Hence the numerical com-
putation and the cosmological phase transition would be investigated in our next work.
Furthermore, the non-Abelian Higgs mechanism in non-perturbative sector [11] or the
Kaon condensate at high temperature in the early Universe [12] could be likely considered
by this way.
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