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Abstract. We study the coupling and switching effects of two discrete relativistic quantum Jackiw-
Rebbi states in interfaced binary waveguide arrays with cubic-quintic nonlinearity. Like in the
case with Kerr nonlinearity, two Jackiw-Rebbi states can couple efficiently to each other in the
low-power regime, show the switching effect in the intermediate-power regime, and possess the
trapping effect in the high-power regime. However, in the case with cubic-quintic nonlinearity, if
the input Jackiw-Rebbi state power is increased further, one can observe the quasi-linear coupling
effect between two Jackiw-Rebbi states which has not been found between two Jackiw-Rebbi states
in interfaced binary waveguide arrays with Kerr nonlinearity.
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I. INTRODUCTION

Many interesting fundamental photonic phenomena such as discrete solitons (DSs) [1–3],
discrete diffraction [1, 4], diffractive resonant radiation [5] have been found in waveguide arrays
(WAs). Waveguide arrays have also been used to simulate fundamental effects in nonrelativistic
quantum mechanics such as Zener tunneling [6], and photonic Bloch oscillations [7]. Recently,
binary waveguide arrays (BWAs) have been intensively used to investigate several fundamental
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relativistic quantum mechanics phenomena arising from the Dirac equation, e.g., Klein tunnel-
ing [8–10], Zitterbewegung [11], and Dirac solitons in the nonlinear regime [12–18].

In 2017, two localized states (one is the optical analogue of a special state which is well
known as the Jackiw-Rebbi (JR) state emerging from the Dirac equation in the quantum field
theory [19], and the other is the trivial state) were found at the interface of two BWAs with opposite
propagation mismatches in the linear regime [20]. The JR state is well known for predicting
the charge fractionalisation phenomenon which is fundamental in the fractional quantum Hall
effect [21]. One of extraordinary features of the JR state is the topological nature of its zero-
energy solution which is considered to be a precursor to topological insulators [22]. Topological
photonics can play a crucial role in the development of robust optical circuits [23]. In 2019, the
JR states in interfaced BWAs were numerically demonstrated, as expected, to be also extremely
robust under influence of strong disturbance of various kinds such as the turning on/off of the
nonlinearity, the linear transverse potential, and the oblique incidence [24].

In the nonlinear regime, the exact profiles and the detunings of two localized states in
interfaced BWAs have been found by using the so-called shooting method [25] both in the case of
Kerr nonlinearity [26] and cubic-quintic nonlinearity [27]. The interaction between JR states and
Dirac solitons in BWAs has been investigated in Ref. [28]. The interaction between two localized
states in the nonlinear regime of Kerr type has been systematically analyzed in Ref. [29]. It has
been shown in Ref. [29] that in the linear regime and the regime of Kerr nonlinearity two localized
states of different types do not interact practically at all, thus they can be protected from each other
in a reliable way even if they are located quite close to each other. Meanwhile, two localized states
of the same type can couple efficiently to each other and show the nonlinear switching effect like
in symmetric fiber couplers [29].

As mentioned above, the interaction between two localized states in the linear regime and
in the regime of Kerr nonlinearity have been systematically investigated in Ref. [29]. The model
with Kerr nonlinearity is the simplest one for investigating third-order nonlinear effects in optics.
However, if the optical signals are intense enough one needs to take into account the fifth and even
higher-order terms for nonlinearity. The resulting equation in that case is the well-known cubic-
quintic nonlinear Schrödinger equation (NLS) because it contains terms accounting for both the
third and fifth powers of the signal amplitude. In fiber optics this cubic-quintic NLS for a single
fiber has been well studied [30].

In this work we study the interaction between two relativistic quantum JR states in inter-
faced BWAs made of material with cubic-quintic nonlinearity. We show that in the low-intensity
regime with cubic-quintic nonlinearity, like in the case with Kerr nonlinearity, two localized states
of the same type can also couple efficiently, and if we increase further the input intensity of local-
ized states then we also observe the nonlinear switching effect like in fiber couplers and the trap-
ping effect of localized states. However, if the input intensity of localized states is high enough,
then saturation effect of nonlinearity takes place and shows some interesting effects that the regime
of Kerr nonlinearity cannot possess. We also confirm that two localized states of different types
practically do not interact with each other at all in the linear and nonlinear regimes, both with Kerr
and cubic-quintic nonlinearity.

The paper is organized as follows. In Sec. II, as a starting point, we give the theoretical
background of two localized states solutions in interfaced BWAs in the linear regime which will
be necessary further in this work. Then, in Sec. III, we investigate systematically the coupling and
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switching effects of two localized states of the same type in interfaced BWAs. Finally, in Sec. IV
we summarize our results and finish with concluding remarks.

II. GOVERNING EQUATIONS AND LINEAR SOLUTIONS OF JACKIW-REBBI
STATES

Light propagation in BWAs with cubic-quintic nonlinearity can be described, in the continuous-
wave regime, by the following dimensionless coupled-mode equations (CMEs) [12]:

i
dan

dz
+κ [an+1 +an−1]− (−1)n

σan + γ

(
1−bs |an|2

)
|an|2 an = 0, (1)

where an is the electric field amplitude in the nth waveguide, z is the longitudinal spatial coordi-
nate, 2σ and κ are the propagation mismatch and the coupling coefficient between two adjacent
waveguides of the array, respectively, γ is the nonlinear coefficient of the cubic terms of waveg-
uides, and bs is the saturation parameter governing the power level at which the nonlinearity begins
to saturate. For many materials bs |an|2� 1 in most practical situations. However, this term may
become relevant when the peak intensity approaches 1 GW/cm2 in the case of silica [31] (this peak
intensity level can be easily achieved with pulses generated, for instance, from Ti-sapphire lasers
and is commonly used in fiber optics [31]). Note that the cubic-quintic nonlinearity is also called
competing nonlinearities and bs is always positive for most of optical materials such as semi-
conductor waveguides, semiconductor-doped glasses, and organic polymers [32]. The nonlinear
terms in Eqs. (1) describe the competition between self-focusing occurring at low intensities due
to the cubic term and self-defocusing taking over at higher intensities due to the quintic term [32].
For some materials such as single-crystal polydiacetylene paratoluene-sulfonate it has been experi-
mentally demonstrated that the refractive nonlinear coefficient n2 can change its sign from positive
(which is responsible for self-focusing) to negative (which is responsible for self-defocusing) [33]
when the optical intensity increases. It is also worth mentioning that the cubic-quintic nonlinearity
is a special case of a more general kind of nonlinearity known as saturable nonlinearity which ex-
ists in many nonlinear media when the input intensity is much smaller than the so-called saturation
intensity (see in Ref. [32, Eq. (7.4.1)]).

Now let us briefly re-introduce the linear localized solutions obtained at the interface of two
BWAs with opposite propagation mismatches which have been found in Ref. [20]. These linear
solutions will be used further for constructing the initial conditions to solve the beam propagation
problem based on nonlinear Eqs. (1). Like in Ref. [20], now we set this interface at two central
waveguides with n = (−1,0) (see Fig. 1(a) in [20] for more details). For waveguides with n < 0
we have σ = σ1, where for n≥ 0 we have σ = σ2. After setting Ψ1 (n) = (−1)na2n and Ψ2 (n) =
i(−1)na2n−1, and following the standard approach in Ref. [11] we can introduce the continuous
transverse coordinate ξ ↔ n and the two-component spinor Ψ(ξ ,z) = (Ψ1,Ψ2)

T which satisfies
the one-dimensional nonlinear Dirac equation:

i∂zΨ=−iκσ̂x∂ξΨ+σσ̂zΨ− γG+ γbsF, (2)

where the cubic nonlinearity is taken into account via the term G ≡
(
|Ψ1|2Ψ1, |Ψ2|2Ψ2

)T
; the

quintic nonlinearity is taken into account via the term F ≡
(
|Ψ1|4Ψ1, |Ψ2|4Ψ2

)T
; σ̂x and σ̂z are

the usual Pauli matrices. In quantum field theory the parameter σ in the Dirac equation is often
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called the mass of the Dirac field (or Dirac mass). In the case of just Kerr nonlinearity the resulting
equation will be simplified as Eq. (7) in Ref. [12] without the quintic term.

If σ1 < 0 and σ2 > 0 we get the following localized profile as an exact JR solution of Eq. (2)
in the linear case [20]:

Ψ(ξ ) =

√
|σ1σ2|

κ (|σ1|+ |σ2|)

(
1
i

)
e−|σ(ξ )ξ |/κ . (3)

If |σ1|= |σ2|= σ0 one can get exact localized solutions for the discrete Eq. (1) without nonlinear-
ity (γ = 0) for the following two cases [20, 27, 29]:

If −σ1 = σ2 = σ0 > 0, one gets the following discrete JR state [20, 27, 29]:

an = bneiδ1z, (4)

where the detuning δ1 ≡ κ−
√

σ2
0 +κ2, bn is real and independent of the variable z, b2n−1 = b2n,

if n ≥ 0 one has the following relationship: b2n/b2n+1 = α ≡ −
[
σ0/κ +

√
1+σ2

0 /κ2
]
, whereas

for n < 0 one has: b2n/b2n+1 = α . Note that the interface supporting this trivial state has two
adjacent waveguides with (−1)n

σ which must be positive (see also Fig. 1(a) for more details).
However, if σ1 =−σ2 = σ0 > 0, one has the following localized trivial state [20, 27, 29]:

an = bneiδ2z, (5)

where the detuning δ2 ≡ κ +
√

σ2
0 +κ2, bn is again real and independent of the variable z, b2n−1 =

b2n, if n ≥ 0 one has b2n/b2n+1 = −α , whereas for n < 0 one has: b2n+1/b2n = −α . Note that
the interface supporting this trivial state has two adjacent waveguides with (−1)n

σ which must be
negative.

Because the solutions in the form of Eqs. (3) - (5) are obtained in the linear case, obviously,
one will get other linear solutions by multiplying them by an arbitrary number. In other words,
the peak amplitudes of linear solutions can be chosen arbitrarily. Even though these solutions
are obtained in the linear case, as pointed out in Ref. [20], one can use them to construct the
initial conditions for getting the robust nonlinear discrete JR states which can be self-adjusted and
established further during propagation. If the exact localized nonlinear localized states solutions
are needed at the very beginning, then one can use the shooting method to numerically find them
as shown in Ref. [26]. In the rest of this work, we will numerically solve Eqs. (1) to investigate the
interaction between two discrete JR states in interfaced BWAs. As initial conditions for this task
we will use beams in the form of Eq. (3) multiplied by a certain factor f which will be specified
later in each case. In the nonlinear case, if the system consists of just two interfaced BWAs, then
after some propagation distance, the nonlinear JR states will adjust their profiles and get stable
ones, provided that the factor f is not too different from unity [20].

To estimate real physical parameters of the calculated DS solitons below we use typical pa-
rameters in waveguide arrays made of AlGaAs [34], where the coupling coefficient and nonlinear
coefficient in physical units are K = 1240 m−1 and Γ = 6.5 m−1W−1, respectively. In this case,
the power scale will be P0 = K/Γ = 190.8 W and the length scale in the propagation direction will
be z0 = 1/K = 0.8 mm.
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III. COUPLING AND SWITCHING EFFECTS OF TWO DISCRETE JACKIW-REBBI
STATES

Now it is ready for us to deal with the main targets of this work, i.e., to investigate the
interaction of two discrete JR states in the regime of the cubic-quintic nonlinearity. In this work
we will focus on the interaction of discrete JR states, because the interaction of trivial states also
possesses the same qualitative features. Fig. 1(a) plots the array of (−1)n

σ where the interface
at the two waveguides with n = (-5, -4) and the interface at the two waveguides with n = (4, 5)
can both generate discrete JR states. The system consists of three BWAs: the first one covers all
waveguides with n ≤ −5 and has the propagation mismatch parameter σ1, the second one covers
all waveguides with −4 ≤ n ≤ 4 and has the propagation mismatch parameter σ2, and the third
one covers all waveguides with n ≥ 5 and has the propagation mismatch parameter σ3. Other
parameters used for obtaining results in Fig. 1 are as follows: the coupling coefficient κ = 1, the
nonlinear coefficient for the cubic term γ = 1, and the saturation parameter bs = 0.4. In Fig. 1(b)
we launch a discrete JR state with f = 0.1 at the interface at the two waveguides with n = (4, 5).
Because the input beam used in Fig. 1(b) is so weak with f = 0.1, so even though the full cubic-
quintic model based on Eqs. (1) is used for simulation, we practically operate in the linear regime
in Fig. 1(b) and obtain almost the same result as shown in Fig. 5(b) in Ref. [29] with just cubic
nonlinearity term and f = 0.1 as well. What shown in Fig. 1(b) is a typical coupling between
two linear discrete JR states with the coupling length L = 106 where all the energy of the JR state
at the interface with n = (4,5) is transferred to the JR state at the interface with n = (−5,−4).
At the propagation distance z = 2L all the energy is again completely transferred back to the JR
state at the interface with n = (4,5). This kind of energy transfer (or coupling) between the two
JR states takes place periodically. As pointed out in Ref. [29], this linear coupling between two
discrete JR states is completely similar to the well-known coupling between signals in two cores
of a symmetric fiber coupler [3]. The physics behind the coupling between two discrete JR states
is due to the phase matching condition between these two linear discrete JR states [29]. Indeed,
as clearly shown in the analytical solutions in the forms of Eqs. (4), in the linear (or low-power)
regime two discrete JR states always have the same phase during propagation, providing that
|σ1| = |σ2| = |σ3| and κ is constant for the whole system. Therefore, the phase matching during
propagation between these discrete JR states in the linear regime is always satisfied which results
in the efficient coupling between them. In Fig. 1(c) the factor f is increased up to the value f
= 0.5. Now the beam propagation pattern is again periodic during propagation, but only a small
amount of total energy is periodically transferred to the interface with n = (−5,−4), whereas the
main part of the total energy is trapped at the interface with n = (4,5). This situation is totally
different from the scenarios in Fig. 1(b) where all energy is periodically transferred between the
two interfaces. This behavior of the nonlinear coupling between two discrete JR states is again
completely similar to the nonlinear coupling scenario in symmetric fiber couplers when the input
power P0 is larger than the critical power Pc (see Ref. [3, p. 63]). As compared to the case shown
in Fig. 5(d) in Ref. [29] with the same factor f = 0.5, but the nonlinearity is of the pure Kerr type
(i.e., bs = 0 in Fig. 5(d) in Ref. [29] instead of bs = 0.4 in Fig. 1(c) of this current work), one can
see that all the qualitative features in these two figures are the same with the only exception that
the period in Fig. 5(d) in Ref. [29] is a little bit shorter than the one in Fig. 1(c) of this current
work. If we increase further the factor f up to the value f = 1, then our simulations (not included
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Fig. 1. (Color online) Coupling of two discrete JR states. (a) The array of (−1)n
σ as a

function of the waveguide position n. (b,c) Coupling of two discrete JR states when f =
0.1 and 0.5, respectively. (d) The switching character of two discrete JR states when the
longitudinal length of waveguide arrays is equal to the linear coupling length L = 106.
Parameters: −σ1 = σ2 =−σ3 = 1;κ = 1;γ = 1;bs = 0.4.

here) show that the input JR state is practically trapped at the interface with n = (4, 5) where it was
launched into as already demonstrated in Fig. 5(e) in Ref. [29] for Kerr nonlinearity. This case
is again completely similar to the trapping effect in symmetric fiber couplers when P0 � Pc [3].
Therefore, like the situation in fiber couplers and the interaction between two discrete JR states
with Kerr nonlinearity, we have shown that in the regime of cubic-quintic nonlinearity a discrete
JR state can be switched from one interface to the other, or trapped at one interface, depending on
its input power, provided that these two interfaces can support the discrete JR states.

In Fig. 1(d) we plot the relative output power of the two JR states (with respect to the total
initial input power) at the propagation distance equal to the coupling length L = 106 as a function
of the factor f where the full model with the cubic-quintic nonlinearity based on Eqs. (1) is used.
The solid red (dashed blue) curve in Fig. 1(d) represents the relative output power of the JR state
by summing up |an|2 for all n < 0 (n > 0) with the saturation parameter bs = 0.4. For comparison
in Fig. 1(d) we also plot the green solid curve with label bs = 0 which represents the relative output
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power of the JR state with all n < 0 in the case of Kerr nonlinearity. The latter curve has been
already shown in Fig. 5(f) in Ref. [29] (see the solid red curve therein). Now let us focus on the
similarities of the solid red curve and the solid green curve in Fig. 1(d). One can see that in the
low-power regime (when f < 0.2) all the energy of the initial JR state with n> 0 is also completely
transferred to the JR state with n < 0. As a result, the solid red curve is close to unity, whereas
the dashed blue curve is close to zero. However, in the nonlinear regime (when 0.8 < f < 1.8)
all the energy of the input JR state is also just trapped at the same interface, and almost nothing
is transferred to the other JR state. By changing the factor f around 0.4 one also can obtain
the switching effect of the JR states between two interfaces. So, with the model for both Kerr and
cubic-quintic nonlinearity, the features of the linear coupling and nonlinear switching between two
discrete JR states are quite similar to the ones between optical signals in symmetric fiber couplers
(see Ref. [3, Fig. 2.3]). It is worth mentioning that in fiber couplers the coupling and switching
happen just between two cores, whereas for JR states they happen between two interfaces (each
interface consists of two and nearby waveguides). Our simulations also confirm that the coupling
and switching effects of two trivial states (not shown here) have exactly the same features as
the ones of two discrete JR states illustrated in Fig.1 as mentioned in Ref. [29], the physical
reason behind the nonlinear switching between two discrete JR states is similar to the reason in
the case of symmetric fiber couplers [3]. The difference in the mode propagation constants due to
nonlinearity-based self-phase modulation (SPM) introduces a relative phase shift between the two
JR states and hinders complete power transfer between them. At sufficiently high input powers, the
phase difference due to SPM becomes large enough that the input JR state remains trapped in the
same interface into which it was initially launched. Note that under ideal conditions, the response
time of the switching effect is limited by the response time of the cubic-quintic nonlinearity which
is almost instantaneous. For silica, this response time is less than 10 fs [31].

Now let us analyze the differences between the solid red curve and the solid green curve
in Fig. 1(d). First, when the factor f < 1.5 the red solid curve is slightly shifted to the right as
compared to the solid green curve. This little shift of the red solid curve can be better seen by
enlarging Fig. 1(d). Second, when f is too large (close to 2) one can see that both two curves
rise up again. However, the mechanism for this rising is totally different for these two curves.
Regarding the green solid curve representing the case with Kerr nonlinearity, when f is too large,
the input condition is too different from the nonlinear localized JR states investigated in Ref. [27].
So, after launching these intense beams into the system, our simulations (not shown here) reveal
that a significant amount of the input energy is immediately radiated in a chaotic manner to both
two sides of the system. That is the reason why the whole input beam is not trapped at the input
interface, but some energy is distributed to the other side of the system which leads to the rising
of the green solid curve. On the contrary, the rising of the red curve around f = 2 in Fig. 1(d)
happens in an orderly manner because of the saturation effect which makes the nonlinear terms
less important in that region, thus forces the system operate in a regime close to the transition
regime around f = 0.4 of the same curve. This mechanism will be clarified in more details in the
rest of this work.

In Figs. 2(a,c,e) we investigate the dependence of the relative output power r as a function
of the multiplication factor f for three values of the saturation parameter bs = 0.6,0.8 and 1.0,
respectively. In order to better understand the influence of the nonlinear terms in Eqs. (1), let us
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Fig. 2. (Color online) (a,c,e) The switching character of two discrete JR states when the
longitudinal length of waveguide arrays is equal to the linear coupling length L = 106
for the saturation parameter bs = 0.6,0.8 and 1.0, respectively. (b,d,f) The nonlinear
function g as a function of the factor f for the saturation parameter bs = 0.6,0.8 and 1.0,
respectively. The position where g = 0 is indicated by the vertical green solid lines in
(a,c,e), respectively. Parameters: −σ1 = σ2 =−σ3 = 1; κ = 1;γ = 1.

define the nonlinear function g( f ) as follows:

g( f ) =
[
1−bs (p f )2

]
(p f )2 , (6)

where the parameter p =
√
|σ1σ2|/ [κ (|σ1|+ |σ2|)], thus p f represents the peak amplitude of

the interface with n = (4, 5). In Figs. 2(b,d,f) we plot the nonlinear function g as a function
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of the multiplication factor f for three values of the saturation parameter bs = 0.6,0.8 and 1.0,
respectively. As clearly seen in Figs. 2(b,d,f), when the factor f is small, the nonlinear function
g and the factor f increase at the same time. This is understandable because small values of f
mean that the peak amplitude of the input JR state is also weak, and thus the cubic term of the
nonlinearity in Eqs. (1) prevails over the quintic term. However, when f is increased further,
the quintic term now can compete with the cubic term which leads to the saturation effect of the
nonlinearity. As a result, the nonlinear function g cannot increase further, but gets its maximum
value, and decreases for large values of f . At the value f = 1/

(
p
√

bs
)

the nonlinear function g
will be nullified. These positions of f are indicated in Figs. 2(a,c,e) by the vertical green solid
lines. If the factor f is increased further, then the nonlinear function g will become negative
which means that the nonlinearity now is self-defocusing for the peak amplitude at the input.
As already mentioned in the Introduction, it has been experimentally demonstrated that some
materials can switch the nonlinearity from self-focusing to self-defocusing when the input signal
is intense enough [33]. So, now it is clear why the relative output power r can rise up to unity
again in Figs. 2(a,c,e) when f is around the values which can nullify the nonlinear function g
(i.e., around the vertical green solid lines in Figs. 2(a,c,e)). This is because around these high
values of f the system again operates in the quasi-linear regime which is similar to the truly linear
regime for small values of f , and thus at the coupling length L = 106 almost all energy of the input
JR state from the interface with n = (4, 5) can be transferred to the JR state at the interface with
n = (−5,−4), like what happens with small values of f in the low-intensity regime in Fig. 1(b).

Fig. 3. (Color online) (a) Coupling of two discrete JR states when bs = 0.8 and f = 1.68.
(b) Coupling of two discrete JR states when bs = 1.0 and f = 1.5. Parameters: −σ1 =
σ2 =−σ3 = 1;κ = 1;γ = 1.

The possibility that the relative output power r can rise up again to unity for a certain
large value of f is demonstrated in Figs. 3(a,b) where the propagation of the input JR beams is
illustrated for bs = 0.8 with the multiplication factor f = 1.68 in Fig. 3(a), and for bs = 1.0 with the
multiplication factor f = 1.5 in Fig. 3(b). Both these input JR states are launched into the system
at the interface with n = (4,5). As expected, at the coupling length L = 106, all the energy of these
JR states is transferred to the JR states at the interface with n = (−5,−4), like what happens in
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the linear regime. However, in the truly linear regime, this energy transfer between two interfaces
takes place periodically as clearly shown in Fig. 1(b), whereas this periodicity is not present in
the quasi-linear regime in Fig. 3. This is because in the truly near regime, or in the regime with
small values of f as shown in Fig. 1(b), one can totally neglect the nonlinear terms from Eqs. (1),
and the system is indeed a linear one. However, for high values of f as in Fig. 3 one cannot do
that, because the nonlinear function g is only calculated for the peak amplitude of the beam at the
input, but not for all components an of the beams. Therefore, even though at some values of f the
nonlinear function g defined in Eq. (6) can be nullified for the peak amplitude at the input (i.e., for
a4 and a5 at the input), but the nonlinear terms for a3, a6 and other components will significantly
differ from zero at the input. That is the reason we use the term quasi-linear for the high-intensity
regime close to the vertical green solid curves in Figs. 2(a,c,e).

It is worth mentioning that in the regime of Kerr nonlinearity, because bs = 0, therefore the
nonlinear function g is a parabolic function of the factor f . Thus, the nonlinear function g quickly
increases without any saturation effect when the factor f is increased. So in the high-intensity
regime, the dynamics of these two cases (Kerr nonlinearity and cubic-quintic nonlinearity) will be
totally different, and one cannot observe the switching scenarios as in Figs. 2(a,c,e) at large values
of f (around the vertical green lines) for Kerr nonlinearity.

Even though in this work we only show explicitly the interaction between two discrete
JR states in interfaced BWAs with cubic-quintic nonlinearity, our simulations (not included here)
confirm that the interaction between two trivial states also possesses exactly the same qualitative
features, and that two localized states of different types practically do not interact at all in the
regime of cubic-quintic nonlinearity as what happens in the regime with Kerr nonlinearity.

IV. CONCLUSIONS

In conclusion, we have shown that for both Kerr nonlinearity and cubic-quintic nonlinearity
the coupling and switching effects between two discrete JR states in interfaced BWAs are quite
similar to what happens in symmetric fiber couplers: for low input intensities one can observe the
strong coupling between these two JR states, for higher intensities one can observe the switching
effect, whereas for even higher intensities the trapping effect of the JR states will take place.
However, if the JR state input intensity is increased up further, then the saturation effect of the
cubic-quintic nonlinearity will be important, which can lead to the strong coupling between two
discrete JR states again. This coupling in the quasi-linear regime for high input intensities with
cubic-quintic nonlinearity does not take place periodically during propagation, unlike coupling at
low intensities. Regarding two localized states of different types in interfaced BWAs, like in the
case of the linear regime and Kerr nonlinearity, they do not interact at all in the regime of cubic-
quintic nonlinearity. This kind of interaction between two localized states can potentially be useful
for optical switching, coupling and robust guiding in photonic integrated circuits.
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