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Abstract. We investigate the zero and finite temperature transport properties of a quasi-two-
dimensional electron gas in a GaAs/InGaAs/GaAs quantum well under a magnetic field, taking
into account many-body effects via a local-field correction. We consider the surface roughness,
roughness-induced piezoelectric, remote charged impurity and homogenous background charged
impurity scattering. The effects of the quantum well width, carrier density, temperature and local-
field correction on resistance ratio are investigated. We also consider the dependence of the total
mobility on the multiple scattering effect.
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I. INTRODUCTION

GaAs/InGaAs/GaAs lattice-mismatched quantum well (QW) structure with a finite bar-
rier height has been studied by several authors [1–4]. To assess the quality of new materials or
electronic devices one needs to study their physical properties, among which transport ones such
as mobility and resistivity turn out to be very important. In order to determine the main scat-
tering mechanisms, which limit the mobility, one often compares theoretical results with those
obtained by experiments. Recently, Quang and his co-workers [5] have proposed a new scattering
mechanism so called roughness-induced piezoelectric scattering and have calculated the zero-
temperature mobility limited by this and surface roughness scattering for a GaAs/InGaAs/GaAs
QW under zero magnetic field. By incorporating this scattering, they have explained success-
fully the low-temperature mobility measured for InGaAs-based QW’s Because electronic devices
are often operated at room or higher temperature, calculations and measurements of temperature-
dependent transport properties including magnetoresistance in a parallel magnetic field for dif-
ferent values of carrier density and QW width are very useful tool in determining the key scat-
tering mechanisms and system parameters [6–14]. To the author’s knowledge, up to now, no
calculation of transport properties at finite temperature has been done for spin-polarized quasi-
two-dimensional electron gas (Q2DEG) in a GaAs/InGaAs/GaAs QW. Therefore, the aim of
this article is to calculate the finite temperature magnetoresistance of a Q2DEG realized in a
GaAs/InGaAs/GaAs lattice-mismatched QW taking into account many-body effects which are
very important when carrier density is very low [15, 16]. We also calculate the zero-temperature
total mobility and discuss the multiple-scattering effects which may lead to a metal–insulator tran-
sition (MIT) at low density [17, 18].

II. THEORY

We investigate a Q2DEG in the xy plane by using a realistic model of finitely deep quantum
well. At low temperature, we assume that the electrons occupy only the lowest conduction sub-
band. The exact envelope wave function for a finite square quantum well is given by [5]

Ψ(z) =C

√
2
L


cos
(1

2 kL
)

exp(κz) for z < 0
cos
[
k
(
z− 1

2 L
)]

for 0≤ z≤ L
cos
(1

2 kL
)

exp[−κ(z−L)] for z > L
(1)

where C is a normalization constant fixed by

C2
(

1+
sina

a
+

1+ cosa
b

)
= 1 . (2)

Here a = kL and b = κL are dimensionless quantities given by the thickness of QW, L, and the
barrier height V0 as
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with mz being the effective mass of the electron along the growth direction.
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When a parallel magnetic field B is applied to the system, the Q2DEG is polarized and the
electron densities n± at zero temperature for spin up/down are given as follow [6–8]

n± =
n
2

(
1± B

Bs

)
, B < BS,

n+ = n, n− = 0, B≥ Bs.

(5)

Here, n = n++n− is the total electron density and BS is the saturation field determined by gµBBS
= 2EF , where µB is the Bohr magneton, g is the spin g-factor of electrons and EF is the Fermi
energy, EF = h̄2k2

F/2m∗, with kF =
√

2πn being the Fermi wave number and m∗ being the electron
effective mass in xy-plane.

At finite temperature, n± has the form [8]
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n
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√
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2
,

n− =n−n+
(6)

where t = T/TF with TF being the Fermi temperature and x = B/BS. Note that the dependence of
the carrier density on the magnetic field at arbitrary temperature can be obtained by minimizing
the free energy (including Zeeman energy caused by the interaction of the magnetic field with the
spin magnetic moment of the electrons) [19] with respect to spin polarization (n+−n−)/n. Within
the approximation of noninteracting systems, the analytical results can be obtained as shown in
Eqs. (5) and (6). In the Boltzmann theory, the averaged transport relaxation time for the (±)
components is given as [7, 8]
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with f±(ε) = 1/{1+ exp(β [ε − µ±(T )])}, β = (kBT )−1, µ± = ln[−1+ exp(βEF±)]/β , EF± =
h̄2k2

F±/(2m∗), ~q = (q,θ), Θ(q) is the step function and G(q) is a local-field correction (LFC) de-
scribing the many-body effects [15,16]. In the Hubbard approximation, only exchange effects are

included and the LFC has the form GH (q) = q/[gvgs

√
q2 + k2

F ] where gv (gs) is the valley (spin)
degeneracy. To take into account both exchange and correlation effects, we also use analytical
expressions
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εL/(m∗e2) as the effective Bohr radius. Here, εL is the averaged dielectric constant of the system

and
〈∣∣∣U(
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∣∣∣2〉 is the random potential which depends on the scattering mechanism [15].

For the remote charged impurity scattering (RI), the random potential is given by [15]〈
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where NRI is the 2D impurity density, zi is the distance of the impurities from the QW edge at

z = 0, and FRI(q,zi) =
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For the homogenous background impurity scattering (BI), the random potential has the
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For the surface roughness scattering (SR), the random potential is given by [5]〈
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where ∆ is the roughness amplitude and Λ is the correlation length.
For the roughness-induced piezoelectric scattering (PESR), the random potential has the

form [5] 〈∣∣∣UPE(
⇀q)
∣∣∣2〉=

(
3π3/2ee14GAε‖C2∆Λ

8εLc44

)2

F2
PE(t)exp(−q2

Λ
2/4)sin2 2θ . (17)



TRUONG VAN TUAN, NGUYEN QUOC KHANH, VO VAN TAI AND DANG KHANH LINH 127

Here ε‖, A, ei j, ci j are the lattice mismatch, anisotropy ratio, piezoelectric and elastic
stiffness constants, respectively; G = 2(2 c12

c11
+1)(c11− c12) and FPE(q,z;L) is the form factor for

the piezoelectric field [5]
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1
2q
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)
z < 0

e−qz (1+2qz)− e−q(2L−z) 0≤ z≤ L
2qLe−qz, z > L

(18)

The mobility of the un-polarized and fully polarized 2DEG can be calculated as µ =
e〈τ〉/m∗. The resistivity can be obtained using the relation ρ = 1/σ , where σ = σ+ + σ− is
the total conductivity with σ± as the conductivity of the (±) spin component given by σ± =
n±e2 〈τ±〉/m∗ [7, 8].

To determine the total mobility limited by the SR, PESR, RI and BI scattering we can use
the Matthiessen’s rule,

1
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=
1
〈τSR〉

+
1
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+

1
〈τRI〉

+
1
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· (19)

It is well-known that at low electron densities interaction effects become inefficient to
screen the random potential and the MIT can be occurred. The MIT can be explained by tak-
ing into account the multiple-scattering effect (MSE). The MIT is then described by parameter
A0 [14, 17, 18],
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For n > nMIT , where A0 < 1, the Q2DEG is in a metallic phase and the mobility µMSE can
be obtained using the following approximated relation [20]

µMSE = µ(1−A0). (21)

For n < nMIT, where A0 > 1, the Q2DEG is in an insulating phase and µMSE = 0.

III. NUMERICAL RESULTS

We have performed numerical calculations of the resistance ratio ρ(Bs)/ρ(B = 0) and the
zero-temperature total mobility, taking into account the many-body and multiple-scattering effects.
We use V0 = 131 meV and mz = m∗ = 0.058m0, where m0 is the free electron mass.

III.1. The resistance ratio ρ(Bs)/ρ(B = 0) for SR and PESR scattering
The resistance ratio ρ(Bs)/ρ(B = 0) as a function of electron density is shown in Fig. 1

for L = 100 Å, ∆ = 5 Å, Λ = 50 Å and different LFC models. For T = 0 we observe that the
resistance ratio decreases with the increase in electron density. At low (high) densities, we find
that the resistivity of a polarized 2DEG is higher (lower) in comparison with that of the unpolarized
case and the LFC effects are considerable (negligible). For T ∼ 0.3TF the resistance ratio is lower
(higher) than that of zero-temperature case at low (high) densities.

The resistance ratio as a function of QW width L for SR and PESR scattering at temperature
T = 0 and T = 0.3TF is plotted in Fig. 2 for n = 1012 cm−2, ∆ = 5 Å, Λ = 50 Å and different G(q)
models. We see that, for entire range of QW width considered, the resistivity of un-polarized
2DEG is higher in comparison with the polarized case, the many-body effect is negligible for
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SR scattering, and the temperature effect is always notable. For L > 125 Å the dependence of
resistance ratio on QW width is very weak.
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Fig. 1. Resistance ratio ρ(Bs)/ρ(B = 0) as a function of electron density for SR and PESR
scattering for ∆ = 5 Å, Λ = 50 Å, L = 100 Å and three G(q) models.
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Fig. 2. Resistance ratio ρ(Bs)/ρ(B = 0) versus QW width L for SR and PESR at tem-
perature T = 0 and T = 0.3TF for n = 1012 cm−2, ∆ = 5 Å, Λ = 50 Å and three G(q)
models.
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III.2. The resistance ratio ρ(Bs)/ρ(B = 0) for BI and RI scattering
Resistance ratio ρ(Bs)/ρ(B = 0) versus electron density for BI and RI scattering at T = 0

and T = 0.3TF is plotted in Fig. 3 for L = 100 Å, NB1 = NB2 = NB3 = 1017 cm−3 and NRI = n
in different approximations for the LFC. The distance between 2DEG and remote impurities zi
is assumed to be −L/2. It is seen that the resistance ratio decreases with the increase in electron
density. This behavior has been explained by Dolgopolov and Gold, using a qualitative calculation
of the scattering time [10]. For T = 0 we observe that at low densities the resistivity of a polarized
2DEG is higher in comparison with that of the unpolarized case due to an enhancement of the
2D Fermi wave vector and a suppression of the effective 2D screening wave vector in the parallel
magnetic field. The LFC affects remarkably the resistance ratio because the exchange-correlation
effects are very important at low densities. For T = 0.3TF the resistance ratio for BI scattering is
lower (higher) than that for T = 0 at low (high) densities. The finite temperature resistivity of a
polarized 2DEG is always lower in comparison with that of the unpolarized case for entire density
range considered for both BI and RI scattering.
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Fig. 3. Resistance ratio ρ(Bs)/ρ(B = 0) versus electron density for BI and RI scattering
at T = 0 and T = 0.3TF for L = 100 Å, NB1 = NB2 = NB3 = 1017 cm−3 and NRI = n in
different approximations for the LFC.

In Fig. 4, we plot the resistance ratio ρ(Bs)/ρ(B = 0) versus QW width L for BI and
RI scattering at temperatureT = 0 and 0.3TF for NB1 = NB2 = NB3 = 1017 cm−3 and NRI = n =
1012 cm−2 in three G(q) models. The remote impurities are assumed to be in the middle of the
QW. We see that the resistance ratio increases with QW width L, reaches a peak and then decreases
with further increase in L. The resistivity of an unpolarized 2DEG is higher in comparison with that
of a polarized one for all L values considered. The differences between the results of LFC models
are considerable and the resistance ratio ρ(Bs)/ρ(B = 0) increases substantially with temperature.
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Fig. 4. Resistance ratio ρ(Bs)/ρ(B = 0) versus QW width L for BI and RI scattering at
temperatureT = 0 and 0.3TF for NB1 = NB2 = NB3 = 1017 cm−3 and NRI = n = 1012 cm−2

in three G(q) models.
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Fig. 5. Total mobility, limited by SR, PESR, BI and RI scattering, versus electron density
for L= 100 Å, ∆= 5 Å, Λ= 50 Å, NB1 =NB2 =NB3 = 1017 cm−3, NRI = n, and zi =−L/2
in two G(q) models.
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III.3. The total mobility and multiple-scattering effects
The zero-field and zero-temperature total mobility, limited by SR, PESR, BI and RI scatter-

ing, versus electron density n for L = 100 Å, ∆ = 5 Å, Λ = 50 Å, NB1 = NB2 = NB3 = 1017 cm−3,
NRI = n and zi = −L/2 in two G(q) models is plotted in Fig. 5. At low density, we see that the
many-body and multiple-scattering effects are considerable. At high density (n > 1012 cm−2) the
MSE is not important and the total mobility in GH and GGA model is almost identical. The critical
density nMIT for MIT is about 2× 1011 cm−2 and its value in case of GGA model is somewhat
smaller than that obtained by using Hubbard approximation. Finally, we note that, at low densi-
ties, the simple approximation for µMSE given in Eq. (21) gives results very close to those obtained
by more complicated self-consistent multiple-scattering theory [21–23].

IV. CONCLUSION

In conclusion, we have performed the calculation of the resistance ratio ρ(Bs)/ρ(B = 0) as
a function of electron density n and QW width L in three G(q) models at zero and finite temper-
atures for four scattering mechanisms: SR, PESR, RI and BI. We find the remarkable difference
between the results of G = 0, GH , and GGA models at low densities. For all scattering mechanisms
considered, the temperature and magnetic field effects are remarkable for the entire range of QW
width, especially at low densities. For wide QWs the dependence of resistance ratio on QW width
is relatively weak. We have also calculated the zero-field and zero-temperature total mobility as a
function of carrier density n and shown that the MSE leads to a MIT at low density. We find that
the critical density nMIT for MIT in case of GGA model is somewhat smaller than that obtained by
using Hubbard approximation. The dependence of the resistivity on magnetic field, n, L, tempera-
ture and LFC shown in this paper can be used in combination with possible future measurements
to get information about the scattering mechanisms and many-body effects in GaAs/InGaAs/GaAs
lattice-mismatched QW structures [14].
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