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Abstract. The Mott - Hubbard metal - insulator transition in the half-filled mass imbalanced ionic
Hubbard model is investigated using the two-site dynamical mean field theory. We find that for a
fixed mass imbalanced parameter r the critical interaction Uc increases when the ionic energy ∆

is increased. In the other hand, for a fixed ∆, Uc decreases with increasing the mass imbalance.
We also show the existence of a band insulating phase in the system for the case ∆ 6= 0,U = 0 and
calculate the staggered charge density nB−nA as a function of the interaction for different values
of the mass imbalance. Our results in the limiting cases (r = 1, ∆ 6= 0 or/and ∆ = 0, r 6= 1) are in
good agreement with those obtained from the full dynamical mean field theory.

Keywords: ionic Hubbard model; mass imbalance; Mott transition.

Classification numbers: 71.27.+a, 71.10.Fd, 71.30.+h.

c©2019 Vietnam Academy of Science and Technology

http://dx.doi.org/10.15625/0868-3166/29/3/14265
mailto:hatuan@iop.vast.ac.vn


306 NGUYEN THI HAI YEN et al.

I. INTRODUCTION

In recent years, with the achievement of laser cooling technique, ultracold atoms in optical
lattices have attracted a lot of studies that give new insight into the complex behavior of quantum
many-body systems [1, 2]. By manipulating the interaction strength using the Feshbach reso-
nance [3], it is possible to enable the observation of many-body phenomena from weak to strong
coupling. Thus the conventional Hubbard model has been realized in optical lattices and investi-
gated experimentally [4–6]. Furthermore, optical lattices can be generated in various geometries,
including bipartite lattices with different potential minima on the two sublattices [7]. In addition,
by varying the parameters of lasers being used, one can separately vary the hopping parameter of
each spin component in the Hubbard model. As a result, this creates a mass imbalance between the
spin components in the Hubbard model [8–11]. In condensed-matter physics mixtures of fermions
with different effective masses are realized in rare-earth-metal compounds where a localized f
level crosses a wide conduction band [12,13]. The possibility of having bipartite lattices with dif-
ferent potential minima on the two sublattices with different parameter of each spin component in
the Hubbard model enables one to set up the mass-imbalanced ionic Hubbard model. Therefore,
it would be interesting to theoretically study how the phase diagram in the ionic Hubbard model
is affected by a mass imbalance.

Dynamical mean field theory (DMFT) is a very successful method to investigate the physics
of strongly correlated electrons on a lattice. However, the CPU time required by DMFT calculation
is fairly large. On the other hand, the two-site DMFT proposed by Potthoff [14], who showed that a
minimum realization of DMFT is achieved by mapping a correlated lattice model onto an impurity
model that consists of two sites, one for the impurity and one for the bath of conduction electrons.
This method provides a simple and attractive technique to obtain fairly good results for the Mott
transition and the Fermi liquid phase in the single band Hubbard model. The two-site DMFT
was also successfully applied for studying the Mott transition of the Hubbard model with mass
imbalance [15–17].

In this paper we employ the two-site DMFT to study the Mott transition in the mass-
imbalanced ionic Hubbard model at half filling, where the translational symmetry is reduced and
the spin SU(2) symmetry is explicitly broken. It is found that for a fixed ionic energy, the critical
interaction decreases with increasing the mass imbalance. We also calculate the staggered charge
density nB−nA as a function of the interaction for different values of the mass imbalance.

This paper is organized as follows. In Section II we present the model and solving method,
the two-site DMFT. In Sec. III we show and discuss the numerical results for the Mott transitions
in the model. Finally, a brief conclusion is presented in Sec. IV.

II. MODEL AND SOLVING METHOD

We consider the ionic Hubbard model with a mass – imbalance on a bipartite lattice

H =− ∑
i∈A, j∈B,<i j>σ

tσ
(

c†
iσ c jσ +H.c.

)
+ εA ∑

i∈Aσ

niσ + εB ∑
i∈Bσ

niσ +U ∑
i

ni↑ni↓−∑
iσ

µσ niσ , (1)

where ciσ (c
†
iσ ) annihilates (creates) an electron with spin σ at site i, niσ = c†

iσ ciσ and the sum
< i, j > is the sum over the nearest neighbor sites of a Bethe lattice. U is the one-site Coulomb
repulsion. εA = −εB = ∆ are the ionic energies, and ∆ is chosen as a positive value. tσ is the
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spin-dependent nearest - neighbor hopping parameter and µσ the chemical potential, which is
chosen so that the average occupancy is 1 (half - filling). The mass imbalance is introduced via
r = t↓/t↑. When r 6= 1 the spin SU(2) symmetries are explicitly broken. In the mass balanced case,
r = 1, ∆ > 0 the model (1) is reduced to the conventional ionic Hubbard Hamiltonian.

We apply DMFT to investigate the Hamiltonian model (1). In DMFT, the original lattice
model is mapped onto an effective single impurity Anderson model embedded in an uncorrelated
bath of electrons. In this case, an impurity orbital d†

σ |0 > is coupled to a bath of non-interacting
orbitals via the hybridization Vασ which depends on the sublattice α and spin σ . The lattice Green
function is then obtained via self-consistent conditions imposed on the impurity problem. On a
bipartite lattice A−B the local Green function is given by

Gασ (ω) =
∫

∞

−∞

ξασ ρ0
σ (z)dz

ξAσ ξBσ − z2 , (2)

where α = A(α = B), ξασ = ω +µασ −Σασ (ω) with µασ = µσ −εα , Σασ the local self - energy
for sublattice α and spin σ , ρ0

σ (z) the spin-dependent non-interacting density of states (DOS). For
the Bethe lattice with infinite coordination number

ρ
0
σ (z) =

1
2πt2

σ

√
4t2

σ − z2, (3)

the self - consistent condition is given by

∆ασ (ω) = t2
σ Gασ (ω), (4)

where ∆ασ (ω) = ω +µασ −G−1
0ασ

(ω) is the hybridization function with G0ασ (ω) being the non-
interacting Green function of the effective impurity model for sublattice α . To proceed further
we use the two-site DMFT. We focus on the paramagnetic case at half-filling, for which 〈nα↑〉
= 〈nα↓〉 = 〈nα〉/2 and µ↑ = µ↓ = U/2. In the two-site DMFT, the full DMFT self - condition
Gimp

ασ (ω) = Gασ (ω) is replaced by the following self-consistency conditions [14]

nimp
α = nα (5)

V 2
ασ = Zασ t2

σ , (6)

where nimp
α is the average occupancy of the impurity orbital in α-sublattice,

Zασ =
(

1− dReΣασ (0)
dω

)−1
is the quasi-particle weight.

The equations (2)- (6) must now be solved with nA+nB = 2, where at zero temperature nα =

−1/π ∑
σ

∫ 0
−∞

ℑGασ (ω)dω . From the self - consistent solutions one can determine the occupation

numbers nA,nB and Zασ as functions of the model parameters U , ∆, r and study the metal-insulator
transitions in the system.

III. RESULTS AND DISCUSSION

Before numerically solving the above equations, let us briefly consider limiting cases. In
the non - interaction (U = 0) limit, the integral (2) is evaluated analytically with result

Gασ (ω) =
1

2t2
σ

{
ω− εᾱ −

[
(ω− εᾱ)

2− ω− εᾱ

ω− εα

4t2
σ

]1/2
}
, (7)
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which is clear that the total DOS at the Fermi level is zero (ρ(0) = ∑
ασ

ρασ (0) = 0), i. e. the system

is a band insulator (BI) for all values of r and finite ∆.
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Fig. 1. Critical interaction in the half-filled mass imbalanced Hubbard model (∆ = 0) as
a function of the mass imbalanced parameter r: a comparison between the two-site and
the full DMFT results in Ref. [15]. The squares correspond to our numerical results, and
the solid line corresponds to the results obtained by using the two-site analytic expression
from Ref. [17].

We return now to present our numerical results. The systems of equations are solved numer-
ically by simple iterations to determine the self - energy Σασ (ω) and the Green function Gασ (ω).
The algorithm is summarized as follows: Start with a guess for the one-particle energy of the bath
site and the hybridization strength Vασ , the two - site impurity model can be solved to find its
self-energy, Green function and the average occupancy of the impurity level nimp

α . Then, the quasi
- particle weight Zασ is calculated and from the condition (6) a new value for the hybridization
strength Vασ is found. Inserting Σασ (ω) into Eq. (2), one finds the local lattice Green function
Gασ and the filling nα which must be compared with nimp

α . Finally, a new value for the one-particle
energy of the bath site of each sublattice is chosen such that the different nα −nimp

α is reduced in
the next cycle. The cycles have to be iterated until convergence is reached. In actual numerical
calculations, we replace the real frequency by the complex one ω→ ω + iη , where η is a positive
infinitesimal number. If η is too small the convergence is never reached. Thus, η must take a
finite small value (should be in range from 10−3 to 10−2) to make the iterations converge. Then
we use the spline extrapolation to reach the limit when η → 0 to get sharp pictures for the quasi -
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Fig. 2. Critical interaction in the half-filled mass balanced ionic Hubbard model (r = 1)
as a function of the ionic energy ∆: a comparison between the two-site and the full DMFT
results in Ref. [18]. MI and M denote Mott insulator and metal, respectively.

particle weight, from which one can determine the critical interaction for the Mott metal - insulator
transition. Hereafter, we take t↑ as the energy unit, zero temperature and η = 0.01 in the numerical
calculations. Firstly, we estimate the reliability of the two-site DMFT by comparing the results
of the Mott critical interaction Uc with the ones obtained from full DMFT in the limiting cases.
Within our method the Mott metal - insulator transition is signaled by Zασ (U→Uc)→ 0. In Fig. 1
our two-site DMFT results for Uc as a function of the mass imbalanced parameter r in the mass
imbalanced Hubbard model (∆ = 0) are compared with those obtained from the full DMFT [15].
The numerical results from two-site DMFT are almost identical with the analytic ones [17] and
in very good agreement with the full DMFT results over the whole r range. In Fig. 2 our two-
site DMFT results for Uc as a function of ∆ in the conventional ionic Hubbard model (r = 1) are
compared with those of the full DMFT from Ref. [18]. In this case, although the two-site DMFT
overestimates Uc in the whole ∆ range, we find that they are semi-quantitatively the same and in
both methods the critical interaction increases as ionic energy increases. It should also be noted
that even DMFT with the same impurity solver but different ansatz for the self-energy can lead to
very different quantitative results, such as the metal - insulator phase diagrams of the IHM found
in Refs. [18, 19]. Therefore, the difference between the two-site and the full DMFT results is un-
derstandable and we believe that the two-site DMFT gives satisfactory results for Mott transition
in the mass imbalanced IHM.
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Fig. 3. Critical interaction in the half-filled mass imbalanced Hubbard model as a func-
tion of the ionic energy ∆ for different values of r. MI, M and BI denote Mott insulator,
metal and band insulator, respectively. The dashed line with dots corresponds to the
boundary between metal and band insulator in the mass balanced IHM obtained from
Ref. [18].

We plot in Fig. 3 the Mott critical interaction Uc as functions of ∆ for r = 1.0, 0.8 and 0.5.
Like the balanced case (r = 1), in the mass imbalanced IHM Uc increases when ∆ is increased.
In the other hand, for a fixed ∆, the critical interaction decreases with decreasing r, i.e. with
increasing the mass imbalance. The latter can be understood because at fixed t↑ the larger the
difference in the bare mass means the smaller t↓, hence the easier it is to localize the system. As
we showed in the beginning of this Section when U = 0 the system is a band insulator for all values
of r and finite ∆, i. e. the metallic, the Mott and band insulating phases are found in the (U −∆)
phase diagram of the mass imbalanced IHM at half filling. In Fig. 3 we also present the boundary
between the metal and the band insulator for the mass balanced IHM obtained from Ref. [18].
We expect a similar result for the mass imbalanced IHM, however within the two-site DMFT we
cannot find a proper order parameter of the band insulating phase as well as the BI-metal transition
points. Next, in Fig. 4 we show the two-site result for the staggered charge density nB− nA as a
function of U for different values of r at ∆ = 0.5. For fixed r the charge density decreases with
increasing U and approaches zero for U = Uc. Our results for r = 1.0 (the mass balanced case)
and (U < Uc) are in good agreement with those obtained within the full DMFT in [18], keeping
in mind that in [18] nα denotes the occupation number for only one spin direction. However, we
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Fig. 4. Staggered charge density nB− nA as a function of U for different values of the
mass imbalanced parameter r at ∆ = 0.5. Our results for r = 1.0 (the mass -balanced
case) and (U < Uc) are in good agreement with those obtained within the full DMFT
in [18]. The dotted lines are obtained by using the spline extrapolation to reach the limit
when η → 0.

cannot properly determine the staggered charge density near the transition point between the MI
and the metallic phase, therefore we cannot identify its nature of phase transition.

IV. CONCLUSIONS

In summary, we have used the two-site DMFT to investigate the Mott transition in the mass
imbalanced ionic Hubbard model at half filling. We find that like the balanced case (r = 1), in the
mass imbalanced IHM the critical interaction increases when ∆ is increased. In the other hand,
for a fixed ∆, this quantity (Uc) decreases with increasing the mass imbalance. Our results in
the limiting cases (r = 1, ∆ 6= 0 or/and ∆ = 0, r 6= 1) are in good agreement with those obtained
from full DMFT [15, 16, 18]. We also show the existence of BI phase in the system for the case
∆ 6= 0,U = 0 and calculate the staggered charge density nB−nA as a function of the interaction for
different values of the mass imbalance. However, within the two-site DMFT we cannot determine
the boundary between metallic and band insulating phases and as well as the nature of phase
transitions. These may be the subject of our future study.
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