QUASI THREE-PARAMETRIC R-MATRIX AND QUANTUM SUPERGROUPS $G L_{p, q}(1 / 1)$ AND $U_{p, q}[g l(1 / 1)]$

NGUYEN ANH KY ${ }^{1,2}$ AND NGUYEN THI HONG VAN ${ }^{1,3}$
${ }^{1}$ Institute of Physics, Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
${ }^{2}$ Laboratory of High Energy Physics and Cosmology, Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
${ }^{2}$ Institute for Interdisciplinary Research in Science and Education, ICISE, Quy Nhon, Viet Nam
${ }^{\dagger}$ E-mail: nhvan@iop.vast.ac.vn

Received 23 July 2019
Accepted for publication 12 November 2019
Published 1 December 2019

Abstract

An over-parametrized (three-parametric) R-matrix satisfying a graded Yang-Baxter equation is introduced. It turns out that such an over-parametrization is very helpful. Indeed, this R-matrix with one of the parameters being auxiliary, thus, reducible to a two-parametric R-matrix, allows the construction of quantum supergroups $G L_{p, q}(1 / 1)$ and $U_{p, q}[g l(1 / 1)]$ which, respectively, are two-parametric deformations of the supergroup $G L(1 / 1)$ and the universal enveloping alge$\operatorname{bra} U[g l(1 / 1)]$. These two-parametric quantum deformations $G L_{p q}(1 / 1)$ and $U_{p q}[g l(1 / 1)]$, to our knowledge, are constructed for the first time via the present approach. The quantum deformation $U_{p, q}[g l(1 / 1)]$ obtained here is a true two-parametric deformation of Drinfel'd-Jimbo's type, unlike some other one obtained previously elsewhere.

Keywords: quantum supergroup, R-matrix; Drinfel'd-Jimbo deformation; multi- parametric quantum deformation.

Classification numbers: 02.20.-a; 03.65.Fd.

I. INTRODUCTION

The discovery of the Higgs boson by the LHC collaborations ATLAS and CMS [1,2] shows once again the might of the symmetry principle in physics (see, for instance, [3] and references therein for a review on the Higgs boson's search and discovery). In particular, the standard model (SM) based on the gauge symmetry $S U(3) \otimes S U(2) \otimes U(1)$ (see, for example, $[4,5]$), has been verified by the experiment, specially, after the discovery of the Higgs model, as an excellent model of elementary particles and their interactions [6]. There are, however, a number of problems, which cannot be explained or described by the existing symmetry, for example, within the SM the problems like CP-violation (matter-antimatter asymmetry), neutrino masses and mixing, dark matter, dark energy, etc. cannot be solved. Such problems may require an extension by size, or even, a generalization by concept, of an underlying symmetry ${ }^{1}$ adopted to a physics system. One of such generalizations is the concept of quantum deformed symmetry. Mathematically, if ordinary (or classical) symmetry is described by classical groups such as the above-mentioned group $S U(3) \otimes S U(2) \otimes U(1)$, the quantum deformed symmetry is described by the so-called quantum groups [7-12] (see, for example, [13, 14] for some physics applications of quantum groups).

Using the R-matrix formalism [7] is one of the approaches to quantum groups which can be interpreted as a kind of (quantum) deformations of ordinary (classical) groups or algebras. It has proved to be a powerful method in investigating quantum groups and related topics such as noncommutative geometry [$8,11,12,15]$, integrable systems [7,13, 14], etc. A physical meaning of this approach is the so-called (universal) R-matrix associated to a quantum group satisfies the famous Yang-Baxter equation (YBE) representing an integrability condition of a physical system [$7,13,14]$. A mathematical advantage of this approach is both the algebraic and co-algebraic structure of the corresponding quantum group can be expressed in a few compact (matrix) relations. Quantum groups as symmetry groups of quantum spaces $[7,8,15]$ or as deformations of universal enveloping algebras, called also Drinfel'd-Jimbo (DJ) deformation [9, 10], can be also derived in an elegant way in the framework of the R-matrix formalism. The DJ deformation, which is originally one-parametric, has an advantage that it has a clear algebraic structure (as a deformation from the classical algebraic structure) and it is convenient for a representation construction and a multi-parametric generalization. Combined with the supersymmetry idea [16-18] (see, for example, $[19,20]$, among a vast literature, for a more detailed introduction), the quantum deformations lead to the concept of quantum supergroups [21-24]. In this case, an R-matrix becomes graded and satisfies a graded YBE [24].

By original construction, a quantum (super) group depends on a, complex in general, parameter, but the concept of one-parametric quantum (super) groups can be generalized to that of multi-parametric quantum (super) groups. For about three decades quantum groups have been investigated in great details in many aspects. These investigations were carried out first and mainly on the one-parametric case and they were extended later to on the multi-parametric deformations [8,25]. Having in principle richer structures, multi-parametric quantum groups are also a subject of interest of a number of authors (see Refs. [26-36] and references therein) and have been applied to considering some physics models (see in this context, for example, Refs. [36-39]) but in

[^0]comparison with the one-parametric quantum groups, they are considerably less understood (even, in some cases they can be proved to be equivalent to one-parametric deformations). Moreover, most of the multi-parametric deformations considered so far are two-parametric ones including those of supergroups [27-35] (it is clear that two-parametric deformations of supergroups cannot be always reduced to one-parametric ones [27-29, 31]). Here, we continue to deal with the case of two-parametric deformations, in particular, a two-parametric deformation of the supergroup $G L(1 / 1)$, which was also considered in [27]. The two-parametric deformation obtained there, however, does not lead to a "standard" DJ form of a two-parametric deformation of $U[g l(1 / 1)]$ obtaining which is the purpose of the present work. It will be shown that such a two-parametric deformation of DJ type can be found via a quasi three-parametric deformation of $G l(1 / 1)$.

II. DRINFEL'D-JIMBO QUANTUM SUPERGROUPS AND THEIR TWO-PARAMETRIC GENERALIZATION

A quantum group as a DJ deformation [9,10] of an universal enveloping algebra of a (semi-) simple superalgebra g of rank r can be defined via a set of $3 r$ Cartan-Chevalley generators h_{i}, e_{i}, f_{i}, $i=1,2, \ldots, r$, subject to the following defining relations (see, for example, [40,41] and references therein):
a) the quantum Cartan-Kac supercommutation relations,

$$
\begin{align*}
& {\left[h_{i}, h_{j}\right]=0,\left[h_{i}, e_{j}\right]=a_{i j} e_{j}} \\
& {\left[h_{i}, f_{j}\right]=-a_{i j} f_{j},\left[e_{i}, f_{j}\right\}=\delta_{i j}\left[h_{i}\right]_{q_{i}}} \tag{1}
\end{align*}
$$

b) the quantum Serre relations,

$$
\begin{equation*}
\left(a d_{q} E_{i}\right)^{1-\tilde{a}_{i j} \mathscr{E}_{j}}=0,\left(a d_{q} \mathscr{F}_{i}\right)^{1-\tilde{a}_{i j}} \mathscr{F}_{j}=0 \tag{2}
\end{equation*}
$$

with $\mathscr{E}_{i}=e_{i} q_{i}^{-h_{i}}, \mathscr{F}_{i}=f_{i} q_{i}^{-h_{i}}$, and
c) the quantum extra-Serre relations which for g being $\operatorname{sl}(m / n)$ or $\operatorname{osp}(m / n)$ have the form,

$$
\begin{align*}
& \left\{\left[e_{m-1}, e_{m}\right]_{q},\left[e_{m}, e_{m+1}\right]_{q}\right\}=0 \\
& \left\{\left[f_{m-1}, f_{m}\right]_{q},\left[f_{m}, f_{m+1}\right]_{q}\right\}=0 \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
[X]_{q}=\frac{q^{X}-q^{-X}}{q-q^{-1}} \tag{4}
\end{equation*}
$$

denotes a (one-parametric) quantum deformation of a number or operator X, and $\left(\tilde{a}_{i j}\right)$ is a matrix obtained from the non-symmetric Cartan matrix $\left(a_{i j}\right)$ of g by replacing the strictly positive elements in the rows with 0 on the diagonal entry by -1 , while $a d_{q}$ is the q-deformed adjoint operator given by the formula (2.8) in [40]. Here $q_{i}=q^{d_{i}}$ where d_{i} are rational numbers symmetrizing the Cartan matrix, $d_{i} a_{i j}=d_{j} a_{j i}, 1 \leq i, j \leq r$. They take, for example, in case $g=s l(m / n)$, the values

$$
d_{i}= \begin{cases}1 & \text { for } 1 \leq i \leq m \tag{5}\\ -1 & \text { for } m+1 \leq i \leq r=m+n-1\end{cases}
$$

Now let us define a two-parametric DJ deformation as a direct generalization of the above-defined one-parametric deformation (1)-(3) by extending (4) to

$$
\begin{equation*}
[X]_{p, q}=\frac{q^{X}-p^{-X}}{q-p^{-1}} \tag{6}
\end{equation*}
$$

where p and q are, in general, independent complex parameters. Thus $[h]_{q_{i}}$ in (1) becomes

$$
\begin{equation*}
\left[h_{i}\right]_{p_{i}, q_{i}} \equiv \frac{q_{i}^{h_{i}}-p_{i}^{-h_{i}}}{q_{i}-p_{i}^{-1}}, \tag{7}
\end{equation*}
$$

with q_{i} defined above and $p_{i}=p^{d_{i}}$. This kind two-parametric generalization of the DJ deformation was considered earlier in, for example, [29,31,32]. Next, according to this definition, we will derive via the R-matrix formalism a two-parametric DJ deformation of $U[g l(1 / 1)]$ which, to our knowledge, has not yet been constructed. Since $g l(1 / 1)$ is a rank-1 $(r=1)$ superalgebra, the index i will be omitted.

As discussed in the previous section, one of the two-parametric quantum deformations of $G L(1 / 1)$ was obtained elsewhere [27], however, the corresponding two-parametric deformation of the universal enveloping algebra $U[g l(1 / 1)]$ has no DJ form. In fact, the two-parametic deformation of $U[g l(1 / 1)]$ in [27] can be transformed to an one-parametric DJ deformation by re-scaling its generators appropriately. Indeed, starting from the defining relations of the deformation of $U[g l(1 / 1)]$ given in [27],

$$
\begin{gathered}
{[K, H]=0,\left[K, \chi_{ \pm}\right]=0,\left[H, \chi_{ \pm}\right]= \pm 2 \chi_{ \pm}} \\
\left\{\chi_{+}, \chi_{-}\right\}_{q / p}=\left(\frac{q}{p}\right)^{H / 2}[K]_{\sqrt{q p}}
\end{gathered}
$$

where

$$
\begin{gathered}
\left\{\chi_{+}, \chi_{-}\right\}_{q / p} \equiv\left(\frac{q}{p}\right)^{1 / 2} \chi_{+} \chi_{-}+\left(\frac{q}{p}\right)^{-1 / 2} \chi_{-} \chi_{+} \\
{[K]_{\sqrt{q p}}=\frac{(q p)^{K / 2}-(q p)^{-K / 2}}{(q p)^{1 / 2}-(q p)^{-1 / 2}}}
\end{gathered}
$$

and making re-scaling $\chi_{ \pm} \rightarrow \chi_{ \pm}^{\prime}=\left(\frac{q}{p}\right)^{-H / 4} \chi_{ \pm}$, we get

$$
\begin{aligned}
& {[K, H]=0,\left[K, \chi_{ \pm}^{\prime}\right]=0} \\
& {\left[H, \chi_{ \pm}^{\prime}\right]= \pm 2 \chi_{ \pm}^{\prime},\left\{\chi_{+}^{\prime}, \chi_{-}^{\prime}\right\}=[K]_{\sqrt{q p}}}
\end{aligned}
$$

The latter relations are (conventional) defining relations of an one-parametric DJ deformation of $U[g l(1 / 1)]$ with parameter $\sqrt{q p}$ (cf. (1)-(4)). To obtain a true two-parametric deformation of both $G L(1 / 1)$ and $U[g l(1 / 1)]$ we start from a three-parametric R-matrix satisfying a graded YBE. This R-matrix approach will allow us to construct a (quasi) three-parametric deformation of $G L(1 / 1)$ which in fact is equivalent upto a rescaling to a true two-parametric deformation of $G L(1 / 1)$. It also leads to a true two-parametric DJ deformation of $U[g l(1 / 1)]$.

III. A QUASI THREE-PARAMETRIC DEFORMATION OF $G L(1 / 1)$

As the maximal number of parameters of a quantum deformation of $G L(1 / 1)$ is two, the below-obtained deformation of $G L(1 / 1)$ is in fact quasi-three parametric (so is the corresponding R-matrix). We will see below that such an over-parametrization is very convenient.

Let us start with the operator

$$
\begin{align*}
R= & q\left(e_{1}^{1} \otimes e_{1}^{1}\right)+r\left(e_{1}^{1} \otimes e_{2}^{2}\right)+s\left(e_{2}^{2} \otimes e_{1}^{1}\right) \\
& +\lambda\left(e_{2}^{1} \otimes e_{1}^{2}\right)+p\left(e_{2}^{2} \otimes e_{2}^{2}\right) \tag{8}
\end{align*}
$$

where p, q, r, s and λ are complex deformation parameters, while $e_{j}^{i}, i, j=1,2$, are Weyl generators of $G L(1 \mid 1)$ with a Z_{2}-grading given as follows:

$$
\begin{equation*}
\left[e_{j}^{i}\right]=[i]+[j](\bmod 2),[i]=\delta_{i 2} \tag{9}
\end{equation*}
$$

We call the latter operator an R-matrix although it has a (finite) matrix form only in a finitedimensional representation. In the fundamental representation e_{j}^{i} are super-Weyl matrices, $\left(e_{j}^{i}\right)_{k}^{h}=$ $\delta_{k}^{i} \delta_{j}^{h}$, and R is a 4×4 matrix. Three of the five parameters, say, p, q and r, can be chosen to be independent, while the remaining parameters, s and λ, are subject to the constraints

$$
\begin{equation*}
r s=p q, \lambda=q-p \tag{10}
\end{equation*}
$$

By this choice of the parameters, the R-matrix (1) satisfies the graded YBE

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{11}
\end{equation*}
$$

with

$$
\begin{align*}
R_{12}= & R \otimes I \equiv R \otimes e_{i}^{i}, i=1,2, \\
R_{13}= & q\left(e_{1}^{1} \otimes e_{i}^{i} \otimes e_{1}^{1}\right)+r\left(e_{1}^{1} \otimes e_{i}^{i} \otimes e_{2}^{2}\right)+s\left(e_{2}^{2} \otimes e_{i}^{i} \otimes e_{1}^{1}\right) \\
& +(-1)^{[i]} \lambda\left(e_{2}^{1} \otimes e_{i}^{i} \otimes e_{1}^{2}\right)+p\left(e_{2}^{2} \otimes e_{i}^{i} \otimes e_{2}^{2}\right) \tag{12}\\
R_{23}= & I \otimes R \equiv e_{i}^{i} \otimes R,
\end{align*}
$$

where repeated indices are summation indices, I is the identity operator and the Z_{2}-grading is given in (9).

Now suppose the operator subject

$$
\begin{equation*}
T=a e_{1}^{1}+\beta e_{2}^{1}+\gamma e_{1}^{2}+d e_{2}^{2} \equiv t_{i}^{j} e_{j}^{i} \tag{13}
\end{equation*}
$$

obeys the so-called $R T T$ equation

$$
\begin{equation*}
R T_{1} T_{2}=T_{2} T_{1} R \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
T_{1} & =T \otimes I \equiv\left(a e_{1}^{1}+\beta e_{2}^{1}+\gamma e_{1}^{2}+d e_{2}^{2}\right) \otimes e_{j}^{i} \\
T_{2} & =I \otimes T \tag{15}\\
& \equiv e_{j}^{i} \otimes\left[a e_{1}^{1}+(-1)^{[i]} \beta e_{2}^{1}+(-1)^{[i]} \gamma e_{1}^{2}+d e_{2}^{2}\right]
\end{align*}
$$

The Eq. (14) leads to the supercommutation relations between the elements of T :

$$
\begin{align*}
a \beta & =\frac{r}{p} \beta a, a \gamma=\frac{q}{r} \gamma a, a d=d a+\frac{\lambda}{r} \gamma \beta, \beta^{2}=0=\gamma^{2} \tag{16}\\
\beta \gamma & =-\frac{s}{r} \gamma \beta \equiv-\frac{p q}{r^{2}} \gamma \beta, \beta d=\frac{p}{r} d \beta, \gamma d=\frac{r}{q} d \gamma
\end{align*}
$$

Let us denote G a set of all operators (13) satisfying (14) and let T and T^{\prime} be two independent copies of (13) in the sense that all elements t_{j}^{i} of T commute with all those of T^{\prime}. The fact that the
multiplication $T . T^{\prime}$ preserves the relation (14), that is, the relations (16), reflects the group nature of G. Next, since the quantity

$$
\begin{align*}
D(T) & \equiv\left(a-\beta d^{-1} \gamma\right) d^{-1}=d^{-1}\left(a-\beta d^{-1} \gamma\right) \tag{17}\\
& =a\left(d-\gamma a^{-1} \beta\right)^{-1}
\end{align*}
$$

commutes with T and has the "multiplicative" property $D\left(T \cdot T^{\prime}\right)=D(T) \cdot D\left(T^{\prime}\right)$ it can be identified with a representation of a quantum superdeterminant. Thus we can take G with $D(T) \neq 0, \forall T \in G$, as a quasi three-parametric deformation, denoted by $G L_{p, q, r}(1 / 1)$, of a representation of $G L(1 / 1)$. The latter deformation is equivalent upto a rescaling (e.g., $p / r \rightarrow p, q / r \rightarrow q$) to a two-parametric deformation, say $G L_{p, q}(1 / 1)$, but we keep the quasi three-parametric form until obtaining a true two-parametric deformation of $U[g l(1 / 1)]$. When we set $D(T)=1$ we get a quasi three-parametric deformation of $S L(1 / 1)$. We note that the form of the quantum superdeterminant $D(T)$ is the same as that given in [27], that is, it remains non-deformed and belongs to the center of $G L_{p, q, r}(1 / 1)$. The Hopf structure is straightforward and given by the following maps:

- the co-product:

$$
\begin{equation*}
\Delta(T)=T \dot{\otimes} T \tag{18}
\end{equation*}
$$

- the antipode:

$$
\begin{equation*}
S(T) \cdot T=I \tag{19}
\end{equation*}
$$

- the counit:

$$
\begin{equation*}
\varepsilon(T)=I \tag{20}
\end{equation*}
$$

In components they read

$$
\begin{gather*}
\Delta\left(t_{j}^{i}\right)=t_{j}^{k} \otimes t_{k}^{i}, \tag{21}\\
S\left(t_{i}^{j} e_{j}^{i}\right)=S\left(t_{i}^{j}\right) e_{j}^{i} \\
=a^{-1}\left(1+\beta d^{-1} \gamma a^{-1}\right) e_{1}^{1}-\left(a^{-1} \beta d^{-1}\right) e_{2}^{1} \tag{22}\\
-\left(d^{-1} \gamma a^{-1}\right) e_{1}^{2}+d^{-1}\left(1-\beta a^{-1} \gamma d^{-1}\right) e_{2}^{2}, \\
\varepsilon\left(t_{j}^{i}\right)=\delta_{j}^{i} . \tag{23}
\end{gather*}
$$

A quantum superplane with symmetry (authomorphism) group $G L_{p, q, r}(1 / 1)$ is given by the coordinates

$$
\begin{equation*}
\binom{x}{\theta} \text { or }\binom{\eta}{y} \tag{24}
\end{equation*}
$$

subject to the commutation relations

$$
\begin{equation*}
x \theta=\frac{q}{r} \theta x \equiv \frac{s}{p} \theta x, \theta^{2}=0 \text { or } \eta^{2}=0, \eta y=\frac{p}{r} y \eta \tag{25}
\end{equation*}
$$

respectively. Note that these quantum superplanes (which are "two-dimensional") are still twoparametric (of course, we cannot make relations between two coordinates to depend on more than two parameters). Finally, in order to complete our program we must construct a true twoparametric DJ deformation of the universal enveloping algebra $U[g l(1 / 1)]$. It can be obtained from a quasi-three parametric DJ deformation, denoted as $U_{p, q, r}[g l(1 / 1)]$, corresponding to the R-matrix (8).

IV. A TWO-PARAMETRIC DRINFEL'D-JIMBO DEFORMATION OF $U[g l(1 / 1)]$

First, following the technique of [7], we introduce two auxilary operators

$$
\begin{align*}
& L^{+}=H_{1}^{+} e_{1}^{1}+H_{2}^{+} e_{2}^{2}+\lambda X^{+} e_{2}^{1}, \tag{26}\\
& L^{-}=H_{1}^{-} e_{1}^{1}+H_{2}^{-} e_{2}^{2}+\lambda X^{-} e_{1}^{2},
\end{align*}
$$

with $H_{i}^{ \pm}$and $X^{ \pm}$belonging to $U_{p, q, r}[g l(1 / 1)]$ to be constructed. Then, demanding

$$
\begin{aligned}
L_{1}^{ \pm} & =L^{ \pm} \otimes e_{i}^{i}, \\
L_{2}^{+} & =e_{i}^{i} \otimes\left[H_{1}^{+} e_{1}^{1}+H_{2}^{+} e_{2}^{2}+(-1)^{[i]} \lambda X^{+} e_{2}^{1}\right], \\
L_{2}^{-} & =e_{i}^{i} \otimes\left[H_{1}^{-} e_{1}^{1}+H_{2}^{-} e_{2}^{2}+(-1)^{[i]} \lambda X^{-} e_{1}^{2}\right]
\end{aligned}
$$

to obey the equations

$$
\begin{equation*}
R L_{1}^{\epsilon_{1}} L_{2}^{\epsilon_{2}}=L_{2}^{\epsilon_{2}} L_{1}^{\epsilon_{1}} R, \tag{27}
\end{equation*}
$$

where $\left(\epsilon_{1}, \epsilon_{2}\right)=(+,+),(-,-),(+,-)$, we get the following commutation relations between $H_{i}^{ \pm}$ and $X^{ \pm}$:

$$
\begin{array}{ll}
\quad H_{i}^{\epsilon_{1}} H_{j}^{\epsilon_{2}}= & H_{j}^{\epsilon_{2}} H_{i}^{\epsilon_{1}}, \\
p H_{i}^{+} X^{+}=r X^{+} H_{i}^{+}, & q H_{i}^{-} X^{+}=r X^{+} H_{i}^{-}, \\
r H_{i}^{+} X^{-}=p X^{+} H_{i}^{+}, & r H_{i}^{-} X^{-}=q X^{-} H_{i}^{-}, \tag{28}\\
r X^{+} X^{-}+s X^{-} X^{+} & = \\
\lambda^{-1}\left(H_{2}^{-} H_{1}^{+}-H_{2}^{+} H_{1}^{-}\right),
\end{array}
$$

which are taken to be the defining relations of $U_{p, q, r}[g l(1 / 1)]$. Its Hopf structure is given by

$$
\begin{align*}
\Delta\left(L^{ \pm}\right) & =L^{ \pm} \dot{\otimes} L^{ \pm}, \tag{29}\\
S\left(L^{ \pm}\right) & =\left(L^{ \pm}\right)^{-1}, \tag{30}\\
\varepsilon\left(L^{ \pm}\right) & =I, \tag{31}
\end{align*}
$$

or equivalently (no summation on $i=1,2$),

$$
\begin{align*}
\Delta\left(H_{i}^{ \pm}\right) & =H_{i}^{ \pm} \otimes H_{i}^{ \pm}, \\
\Delta\left(X^{+}\right) & =H_{1}^{+} \otimes X^{+}+X^{+} \otimes H_{2}^{+}, \tag{32}\\
\Delta\left(X^{-}\right) & =H_{2}^{-} \otimes X^{-}+X^{-} \otimes H_{1}^{-}, \\
S\left(H_{i}^{ \pm}\right) & =\left(H_{i}^{ \pm}\right)^{-1}, \\
S\left(X^{+}\right) & =-\left(H_{1}^{+}\right)^{-1} X^{+}\left(H_{2}^{+}\right)^{-1}, \tag{33}\\
S\left(X^{-}\right) & =-\left(H_{2}^{-}\right)^{-1} X^{-}\left(H_{1}^{-}\right)^{-1}, \\
\varepsilon\left(H_{i}^{ \pm}\right) & =1, \varepsilon\left(X^{ \pm}\right)=0 . \tag{34}
\end{align*}
$$

At first sight $U_{p, q, r}[g l(1 / 1)]$ given in (28) is a three-parametric quantum supergroup depending on three parameters p, q and r (or $s)$. However, making the substitution

$$
\begin{align*}
& H_{1}^{+}=\left(\frac{r}{p}\right)^{E_{11}}, H_{2}^{+}=\left(\frac{p}{r}\right)^{E_{22}}, \\
& H_{1}^{-}=\left(\frac{r}{q}\right)^{E_{11}}, H_{2}^{-}=\left(\frac{q}{r}\right)^{E_{22}}, \tag{35}\\
& E_{12}=X^{+} r^{E_{22}}, E_{21}=X^{-} s^{E_{11}},
\end{align*}
$$

in (28) and replacing p by p^{-1} (without loss of generality), we obtain a two-parametric deformation of $U[g l(1 / 1)]$ generated by $E_{i j}$, which are two-parametric analogs of the Weyl generators, via the following relations

$$
\begin{align*}
{\left[E_{i i}, E_{j j}\right] } & =0, \\
{\left[E_{i i}, E_{j, j \pm 1}\right] } & =\left(\delta_{i j}-\delta_{i, j \pm 1}\right) E_{j, j \pm 1}, \tag{36}\\
\left\{E_{12}, E_{21}\right\} & =[K]_{p, q},
\end{align*}
$$

where $1 \leq i, j, j \pm 1 \leq 2$ and

$$
\begin{equation*}
[K]_{p, q}=\frac{q^{K}-p^{-K}}{q-p^{-1}}, K=E_{11}+E_{22} . \tag{37}
\end{equation*}
$$

The latter deformation denoted as $U_{p, q}[g l(1 / 1)]$ is a true two-parametric DJ deformation of $U[g l(1 / 1)]$, which we are looking for, as it cannot be made to become one-parametric by a further rescaling of its generators. Of course, (35) is not the only realization of the generators of $U_{p, q, r}[g l(1 / 1)]$ in terms of the deformed Weyl generators $E_{i j}$.

V. CONCLUSION

We have suggested in the present paper an R-matrix satisfying a (quasi) three-parametric graded YBE. Using this overparametrized R-matrix we can obtain two-parametric deformations $G L_{p, q}(1 / 1)$ and $U_{p, q}[g l(1 / 1)]$, respectively, of the supergroup $G L(1 / 1)$ and the corresponding universal enveloping algebra $U[g l(1 / 1)]$, respectively. It is worth noting that the quantum superalgebra $U_{p, q}[g l(1 / 1)]$ is a true two-parametric deformation of $U[g l(1 / 1)]$ generalizing the Drinfel'dJimbo deformation $U_{q}[g l(1 / 1)]$ which is one-parametric. That is $U_{p, q}[g l(1 / 1)]$ cannot be reduced to any one-parametric deformation by any re-scaling or re-definition of generators. Physics interpretations and applications of these two-parametric deformations are a subject of our current interest.

ACKNOWLEDGMENT

This work is funded by the VAST research promotion program under the grant NVCC05.11/19-19.

REFERENCES

[1] G. Aad et al. (ATLAS collaboration), Phys. Lett. B 716 (2012) 1; [arXiv:1207.7214 [hep-ex]].
[2] S. Chatrchyan et al. (CMS collaboration), Phys. Lett. B 716 (2012) 30; [arXiv:1207.7235 [hep-ex]].
[3] Nguyen Anh Ky and Nguyen Thi Hong Van, "Was the Higgs boson discovered?", Comm. Phys. 25 (2015) 1; [arXiv:1503.08630 [hep-ph]].
[4] Ho Kim Quang and Pham Xuan Yem, Elementary particles and their interactions: concepts and phenomena, Springer-Verlag, Berlin, 1998.
[5] S. Willenbrock, Symmetries of the standard model, hep-ph/0410370.
[6] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98 (2018) 030001.
[7] L. Faddeev, N. Reshetikhin and L. Takhtajan, Algebra and Analys 1, 178 (1987).
[8] Yu. Manin, Quantum groups and non-commutative geometry, Centre des Recherchers Mathématiques, Montréal, 1988.
[9] V. Drinfel'd, "Quantum groups", J. Sov. Math. 41898 (1988); Zap. Nauch. Semin. 155 (1986) 18; also in Proceedings of the International Congress of Mathematicians, Berkeley 1986, Vol. 1, The American Mathematical Society, Providence, RI, 1987, pp. 798-820.
[10] M. Jimbo, Lett. Math. Phys. 10, (1985) 63; ibit 11 (1986) 247.
[11] S. L. Woronowicz, Commun. Math. Phys. 111 (1987) 613.
[12] S. L. Woronowicz, Commun. Math. Phys. 122 (1989) 125.
[13] S. Gomez, M. Ruiz-Altaba and G, Sierra, Quantum groups in two-dimensional physics, Cambridge university press, Cambridge, 1996.
[14] M. Jimbo (ed.), Yang-Barter equation in intergrable systems, World Scientific, Singapore, 1989.
[15] J. Wess, Fortsch. Phys. 48 (2000) 233.
[16] Y. A. Golfand and E. P. Likhtman, JETP Lett. 13 (1971) 323 [or in Russian: Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452].
[17] D. V. Volkov and V. P. Akulov, JETP Lett. 16, 438 (1972) [or in Russian: Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621].
[18] J. Wess and B. Zumino, Nucl. Phys. B 70 (1974) 39.
[19] P. C. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore, 1990.
[20] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton univ. press, Princeton, New Jersey, 1983.
[21] Yu. Manin, Commun. Math. Phys. 123 (1989) 169.
[22] P. Kulish and N. Reshetikhin, Lett. Math. Phys 18 (1989) 143.
[23] J. Schmidke, S. Volos and B. Zumino, Z. Phys. C 48 (1990) 249.
[24] M. Chaichian and P. Kulish, Phys. Lett. B 234 (1990) 72.
[25] N. Reshetikhin, Lett. Math. Phys. 20 (1990) 331.
[26] A. Schirrmacher, J. Wess and B. Zumino, Z. Phys. C 49 (1991) 317.
[27] L. Dabrowski and L.-y. Wang, Phys. Lett. 266B (1991) 51.
[28] H. Hinrichsen and V. Rittenberg, Phys. Lett. B 275 (1992) 350; [hep-th/9110074].
[29] Nguyen Anh Ky, J. Phys. A 29 (1996) 1541; [math.QA/9909067].
[30] V. Dobrev and E. Tahri, Int. J. Mod. Phys. A 13 (1998) 4339.
[31] Nguyen Anh Ky, J. Math. Phys. 41 (2000) 6487; [math.QA/0005122].
[32] Nguyen Anh Ky, J. Phys. A 34, 7881 (2001) [math.QA/0104105].
[33] Naihong Hu, Marc Rosso, Honglian Zhang, Commun. Math. Phys. 278 (2008) 453.
[34] Yun Gao, Naihong Hu, and Honglian Zhang, J. Math. Phys. 56 (2015) 011704.
[35] Naihuan Jing and Honglian Zhang, J. Math. Phys. 57 (2016) 091702.
[36] Nguyen Anh Ky and Nguyen Thi Hong Van, "A two-parametric deformation of U[sl(2)], its representations and complex "spin", math.QA/0506539.
[37] A. Kundu, Phys. Rev. Lett. 82 (1999) 3936.
[38] A Jellal, Mod. Phys. Lett. A 17 (2002) 701.
[39] A. Algin and B Deriven, J. Phys. A 38 (2005) 5945.
[40] Nguyen Anh Ky, J. Math. Phys. 35 (1994) 2583; [hep-th/9305183].
[41] Nguyen Anh Ky and N. Stoilova, J. Math. Phys. 36 (1995) 5979; [hep-th/9411098].

[^0]: ${ }^{1}$ Here we do not discuss the global- and the local symmetry separately.

