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Abstract. We discuss technical issues involving the implementation of a computational method
for the electronic structure of material systems of arbitrary atomic arrangement. The method is
based on the analysis of time evolution of electron states in the real lattice space. The Chebyshev
polynomials of the first kind are used to approximate the time evolution operator. We demonstrate
that the developed method is powerful and efficient since the computational scaling law is lin-
ear. We invoked the method to study the electronic properties of special twisted bilayer graphene
whose atomic structure is quasi-crystalline. We show the density of states of an electron in this
graphene system as well as the variation of the associated time auto-correlation function. We find
the fluctuation of electron density on the lattice nodes forming a typical pattern closely related to
the typical atomic pattern of the quasi-crystalline bilayer graphene configuration.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) is an engineered material, which can be formed by stack-
ing two graphene layers on each other using the transfer technique. By this method, the two
graphene lattices are generally mismatched. The lattice alignment is characterized by a twist angle
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and a displacement between the two layers. In this system, the van der Waals interaction governs
the coupling of two graphene layers and keeps the TBG configurations stable [1, 2]. In general,
stacking two material layers permits to exploit the interlayer coupling and the lattice alignment be-
tween the two constituent lattices to manipulate the electronic properties of this composed system.
It was predicted that twisting two graphene layers allows a strong tuning of its electronic prop-
erties. Many van Hove singularity peaks were observed in the electronic energy spectrum [3–7].
Especially, a very narrow band containing the intrinsic Fermi energy level in some special TBG
configurations was considered to support the dominance of many-body physics [8–12]. It was ex-
perimentally demonstrated by Cao et al. that the TBG configuration with the twist angle of 1.08◦

exhibits several strongly correlated phases, including an unconventional superconducting and a
Mott-like phase [13, 14].

A generic stacking two material layers imply that the alignment between the two constituent
lattices is not always guaranteed to be commensurate. The atomic configurations of TBGs can be
characterized by an in-plane vector τττ and a twist angle θ defining, respectively, the relative shift
and rotation between the two graphene lattices. It is, however, shown that, regardless of τ , when
θ = acos[(3m2 +3mr+ r2/2)/(3m2 +3mr+ r2)], in which m,r are coprime integers, the stacking
is commensurate [4, 15–19]. Though the translational symmetry of the TBG lattice is preserved
in this case, a large unit cell is usually defined, especially for small twist angles θ . Conventional
methods based on the time-independent Schrodinger equation associated with the Bloch theorem
are commonly used to calculate the electronic structure. Such methods, unfortunately, are not
applicable for the incommensurate TBG lattices because of the loss of the translational invariance.
Partial knowledge on the energy spectrum, however, can be obtained by interpolating/extrapolating
data of the energy spectrum of commensurate TBG configurations for that of the incommensurate
ones. This scheme is guaranteed by a demonstration of the continuous variation of the energy
spectrum versus the twist angle [20]. Effective continuum models can be also constructed to study
the electronic structure of TBG configurations of tiny twist angles [3, 5, 7, 15, 21–23].

In this work, we will demonstrate that the electronic structure of a generic atomic lattice,
with or without the translational symmetry, can be obtained efficiently by using the real-space
approach, instead of the reciprocal space approach. The method we developed is based on the
analysis of the dynamics of electrons in an atomic lattice. There are many technical issues involv-
ing the implementation of this method. In this article, we will address such technical issues in
details. We rigorously validate the method and then present the calculated data of the electronic
properties of a special incommensurate TBG configuration with the twist angle of 30◦. Depending
on the choice of the twist axis, the resulted atomic lattice can possess a rotational symmetry axis.
Specifically, by starting from the AA-stacking configuration, if the twist axis (perpendicular to the
lattice plane) goes through the position of a carbon atom, it is the 3-fold axis. However, if the
twist axis goes through the central point of the hexagonal ring, it is the 12-fold axis. The latter
choice is special because it is not only a higher-order symmetry axis but the resulted TBG con-
figuration is a particular quasi-crystal, see Fig. 1 [24, 25]. Very recently, the electronic structure
of this system was interested in [26]. However, the investigation was based on an effective model
describing 12-fold symmetric resonant electronic states and/or on the extrapolation of the data of
a close commensurate TBG configuration, e.g., θ = 29.99◦. Such a method is clearly different
from, and not natural as our developed approach. On the basis of the developed method, we are
able to calculate not only the local density of states (LDOS), the total density of states (DOS), but
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also the distribution of electron density on the lattice nodes. We find that the distribution of the
electron density fluctuation shows a typical pattern, which is consistent with the symmetry of the
atomic lattice.

The outline of this paper is as follows. In Sec. II, we present in details the basis of the cal-
culation method and an empirical tight-binding model which allows characterizing the dynamics
of the 2pz electrons in the TBG atomic lattices. Particularly, we show in Sub-sec. II.1 how the
formula of the density of states is reformulated in terms of a time auto-correlation function, which
is determined from a set of intermediate Chebyshev states established from recursive relations.
We review the essence of a stochastic technique to evaluate the trace of Hermitian operators in
Sub-sec. II.2. Especially, we present in Sub-sec. II.3 an algorithm for sampling lattice nodes to
define initial electronic states. In Sec. III, we first discuss important computational issues involv-
ing the implementation of the method and then present results for the density of states and the
distribution of the valence electron density on interested TBG configurations. Finally, we present
conclusions in Sec. IV.

II. THEORY

II.1. Chebyshev states and calculation of density of states
The density of states — the number of electron states whose energies are in the vicinity of

given energy value and measured in a unit of space volume — is a basic quantity characterizing
the energy spectrum of an electronic system. Denoting {En} and {|n〉} the eigenvalues and eigen-
vectors of a Hamiltonian Ĥ that describes the dynamics of an electron system, DOS is formulated
as follows:

ρ(E) =
s

Ωa
∑
n

δ (E−En) =
s

Ωa
∑
n
〈n|δ (E−Ĥ )|n〉, (1)

where s is the factor accounting for the degeneracy of some degrees of freedom such as spin and/or
valley, Ωa is a volume used to normalise DOS. Eq. (1) is rewritten in the general form:

ρ(E) =
s

Ωa
Tr
[
δ (E−Ĥ )

]
, (2)

where the symbol “Tr[...]” denotes the trace of operator inside. This equation is very instructive
because it suggests the use of different representation to evaluate the trace. Since the operator
δ (E−Ĥ ) is an abstract form, we would go further by using the formal formula

δ (E−Ĥ ) =
1

2π h̄

∫ +∞

−∞
dteiEt/h̄Û (t), (3)

where Û (t) = exp
(
−iĤ t/h̄

)
is nothing rather than the definition of the time evolution operator.

Substitute (3) into (2) we obtain this formula for DOS:

ρ(E) =
s

π h̄Ωa
Re
{∫ +∞

0
dteiEt/h̄C(t)

}
, (4)

where the symbol “Re” denotes taking the real part of the integral value, and the function C(t) is
defined by

C(t) = Tr
[
Û (t)

]
. (5)
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Eq. (4) tells us that the density of states of an electron is the power spectrum of C(t) that, as will
be seen in subsection II.3, is truly a time auto-correlation function.

The exponential form of Û (t) is useful because it suggests that we can use the Taylor
expansion to specify this operator. Practically, concerning the convergent issue of the expansion,
orthogonal polynomials should be used instead. In our work, we use Chebyshev polynomials of
the first kind Qm(x) = cos[marcos(x)] to expand Û (t) [27]. Though defined through a geometrical
function, Qm(x) are truly polynomials,

Q0(x) = 1,
Q1(x) = x,

Q2(x) = 2x2−1, (6)

Q3(x) = 4x3−3x,
...

Qm(x) = 2xQm−1(x)−Qm−2(x),

where x is defined in the range of [−1,1]. These expressions can be simply obtained from the
formal definition of Qm(x). The two first equations and the last one compose the recursive relation
of the Chebyshev polynomials of the first kind. For the sake of using Qm(x) for the expansion of
a function, it is useful to notice their orthogonal relationship. Indeed, the Chebyshev polynomials
are orthogonal via the weight of 1/π

√
1− x2. Particularly, we have:

∫ 1

−1
dx

1
π
√

1− x2
Tm(x)Tn(x) =

δm,0 +1
2

δm,n, (7)

where δm,n is the conventional Kronecker symbol.
In order to apply the polynomials Qm(x) in the development of Û (t) we first need to rescale

the spectrum of Hamiltonian Ĥ to the interval [−1,1]. This scaling is obtained by replacing Ĥ
by a rescaled one ĥ via the transformation Ĥ = Wĥ+E0, wherein W is the half of spectrum
bandwidth, E0 the central point of the spectrum. It is now straightforward to write the time-
evolution operator in terms of the Chebyshev polynomials as follows:

Û (t) = eiE0t/h̄
+∞

∑
m=0

2
δm,0 +1

(−i)mBm

(
Wt
h̄

)
Qm(ĥ), (8)

where Bm is the m-order Bessel function of the first kind. Besides the time-evolution operator, we
also have the expression of the delta operator δ (E−Ĥ ) and the step operator θ(E−Ĥ ) in terms
of the Chebyshev polynomials as follows:

δ (E−Ĥ ) =
θ(1− ε)θ(1+ ε)

Wπ
√

1− ε2

+∞

∑
m=0

2
δm,0 +1

Qm (ε)Qm(ĥ), (9)

where ε= (E−E0)/W , and

θ(E−Ĥ ) = θ(1− ε)θ(1+ ε)
+∞

∑
m=0

2
δm,0 +1

sin [marcos(ε)]
mπ

Qm(ĥ). (10)
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Using expansions (8), (9) and (10) the action of Û (t), for instance, on a ket state is realised
via the action of Qm(ĥ) on that ket vector. We thus define the so-called Chebyshev vectors |φm〉=
Qm(ĥ)|ψ(0)〉 and use the recursive relation of Qm(x) to write:

|φm〉= 2ĥ|φm−1〉− |φm−2〉, (11)

with |φ0〉 = |ψ(0)〉 and |φ1〉 = ĥ|φ0〉. This recursive relation of the Chebyshev states is useful to
calculate the state |ψ(t)〉, which is evolved in time from an initial state |ψ(0)〉 under the action of
the time-evolution operator Û (t). According to Eq. (8) we obtain the formula:

|ψ(t)〉= eiE0t/h̄
+∞

∑
m=0

2
δm,0 +1

(−i)mBm

(
Wt
h̄

)
|φm〉. (12)

The expectation of the time-evolution operator Û (t) measured in the state |ψ(0)〉 is thus the
definition of a time auto-correlation function Cψ(t):

〈ψ(0)|Û (t)|ψ(0)〉= 〈ψ(0)|ψ(t)〉=Cψ(t). (13)

II.2. Evaluation of traces using stochastic technique
In this subsection, we address a crucial issue of calculating the trace of operators. Denote

Ô a generic operator acting on the Hilbert space defined by a Hamiltonian Ĥ . Even in the case of
finite dimension, said N, at first glance, this task looks far more complicated. Numerically, given
a basis, the computational cost is scaled by N2. It turns out, however, that the stochastic technique
can extremely facilitate the trace calculation. Indeed, if defining a ket vector

|ψr〉=
N

∑
i=1

gr j| j〉, (14)

where {| j〉} are a basis and {gr j} is a set of independent identically distributed random complex
variables, which in terms of the statistical average 〈〈. . .〉〉 fulfill

〈〈gri〉〉 = 0, (15)
〈〈g∗rigr′ j〉〉 = δrr′δi j (16)

then it is straightforwards to show that

〈〈Or〉〉=
N

∑
j=1

O j j = Tr
[
Ô
]
. (17)

where Or = 〈ψr|Ô|ψr〉 and Oi j are the elements of Ô in the basis {|i〉}, namely Oi j = 〈i|Ô| j〉. Eq.
(15) therefore shows that if there is a set of R vectors |ψr〉 defined as above, we can evaluate the
trace of Ô by a stochastic average:

Tr
[
Ô
]
≈ 1

R

R

∑
r=1
〈ψr|Ô|ψr〉. (18)

This result establishes an efficient scheme for calculating the trace of operators because the number
R of random states does not scale with the dimension N of the Hilbert space. Practically, this
number R can be kept constant or even reduced with increasing N. In Ref. [28] Iitaka and Ebisuzaki
showed an expression for the accuracy of this stochastic scheme. It was shown that the distribution
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of the elements of |ψr〉, p(gr j), has a slight influence on the precision of the estimation Eq. (19).
Consequently, the set of {gr j} generated as random phase factors, i.e., gr j = eiφr j where φr j ∈
[0,2π], is the possible choice for the stochastic trace estimation [27].

II.3. Sampling of localized states and local density of states
In the previous subsection, we generally show that using a set of random phase states can

help to evaluate efficiently the trace of operators acting in a large dimension Hilbert space. To
unveil the physics of electrons at the atomic scale it is, however, useful to invoke localized states,
e.g., atomic orbitals or Wannier-like functions in general, to represent generic electron states.
This approach leads to the so-called tight-binding formalism for the electronic structure of atomic
lattices. Besides the capability of providing the electronic characteristics of an atomic lattice, e.g.
local density of states (LDOS) and the distribution of electron density at lattice nodes, the tight-
binding formalism is powerful in computation compared to other methods based on the Bloch
theorem since they need to analyze symmetries of lattice in detail.

Given an atomic lattice, for the sake of simplicity, we assume that each atom provides only
one valence electron occupying a state localised at the atom position, say | j〉, where j denotes the
order of atom in the lattice. The idea of the tight-binding formalism is the use of these localised
states as a basis to represent generic electron states. In general, an electron state at a time t can be
written in the basis of {| j〉, j = 1,2, . . . ,N} as follows

|ψ(t)〉=
N

∑
j=1

g j(t)| j〉, (19)

where g j(t) is the probability amplitude of finding electron at lattice node j at time t. The quan-
tity Pj(t) = |〈 j|ψ(t)〉|2 = |g j(t)|2 is thus the probability density determining the dynamics of an
electron in the lattice. In principle, the value of g j(t) is obtained by solving the time-dependent
Schröedinger equation but equivalently, the calculation is performed via Eq. (12).

Eq. (14) with gr j = eiφr j provides a general manner to generate a set of random phase
state vectors to evaluate the operator trace. In our work, we follow a different strategy instead.
Accordingly, we chose a lattice node randomly, then select the corresponding interested orbital to
be the initial state |ψ(t = 0)〉. It means that we choose the coefficients g j(t = 0) = δi jeiφ , where
φ is a random real number, and thus

|ψ(t = 0)〉=
N

∑
j=1

δi jeiφ | j〉= eiφ |i〉. (20)

This choice allows us defining the local time-autocorrelation function

Ci(t) = 〈i|ψ(t)〉. (21)

Using Eq. (19) it yields Ci(t) = 〈i|ψ(t)〉= gi(t), i.e., equal to the local probability amplitude at the
node i. Its power spectrum, defined as the Fourier transform of Ci(t), is identified as the density of
states of an electron at the lattice node i, i.e., the local density of states [20, 27]:

ρi(E) =
s

π h̄Ωa
Re
[∫ +∞

0
dteiEt/h̄Ci(t)

]
(22)
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The time-autocorrelation function C(t), and the global density of states ρ(E), are thus calculated
by averaging local information. Particularly, from Eq. (18) we learn that these quantities can be
well approximated by an ensemble average of Ci(t) and ρi(E) over a small set of sampled localized
states |i〉 [20]. This calculation technique is powerful because it works for generic lattices with or
without the translational symmetry. For the lattices with the translational symmetry, the complete
set of sampled lattice nodes includes all lattice nodes in the primitive cell. The number of such
nodes is usually not too large. In this case, the calculation procedure for C(t) and ρ(E) is exact.
For the lattices without the translational symmetry, we have to, in principle, work with a set of
a large number of sampled lattice nodes to ensure the reliability of the ensemble average value.
Practically, as will be shown in the discussion section, a modest large number of sampled lattice
nodes is sufficient to approximately obtain the values of C(t) and ρ(E). In next sections, we
will present the results by employing Eqs. (20), (11), (12), (21), (22), and (18) to determine the
electronic structure of several configurations of the twisted bilayer graphene system.

II.4. Tight-binding Hamiltonian for valence electrons in bilayer graphene
To employ the calculation method presented in the previous subsections to study the elec-

tronic structure of the twisted bilayer graphene we need to specify a Hamiltonian defining the
dynamics of electrons. It is well-known that in graphene, and generally graphite, the electronic
properties are governed by electrons that occupy the 2pz orbitals of carbon atoms (the other or-
bitals contribute to the strong σ bonds between carbon atoms, governing the planar structure of
graphene). The hybridization of the 2pz orbitals forms the π-bond between carbon atoms. Ac-
cordingly, we use the tight-binding approach to specify the Hamiltonian for the 2pz electrons in
the TBG system [20]:

HTBG =
2

∑
ν=1

[
∑
i, j

tν
i jĉ

†
ν iĉν j +∑

i
V ν

i ĉ†
ν iĉν i

]
+

2

∑
ν=1

∑
i j

tνν̄
i j ĉ†

ν iĉν̄ j. (23)

In this Hamiltonian, the terms in the square bracket define the hopping of the 2pz electrons in a
monolayer of graphene. The layer is labeled by the index ν . The ket vectors of the basis set for
this representation are therefore denoted by {|ν , i〉}. The intra-layer hopping energies of electron
between two lattice nodes i and j are denoted by tν

i j. V ν
i are the onsite energies that are generally

introduced to include local spatial effects. The dynamics of an electron in the lattice is described
via the creation and annihilation of an electron at a layer “ν” and a lattice node “i” through the
operators ĉ†

ν i and ĉν i, respectively. The last term in Eq. (23) describes the hopping of electron
between two layers which is characterized by the hopping parameters tνν̄

i j . The notation ν̄ implies
that ν̄ 6= ν . We use the following model to determine the values of the hopping parameters tν

i j and
tνν̄
i j [29, 30]:

ti j =V 0
ppπ exp

(
−Ri j−acc

r0

)
.

[
1−
(

Ri j.ez

Ri j

)2
]
+V 0

ppσ exp
(
−Ri j−d

r0

)
.

(
Ri j.ez

Ri j

)2

. (24)

In this model we use two Slater-Koster parameters Vppπ ≈ −2.7 eV and Vppσ ≈ 0.48 eV that
determine the coupling energies of the 2pz orbitals via the π and σ bonds. These parameters
characterise the hybridisation of the nearest-neighbour 2pz orbitals in the intra-layer and inter-
layer graphene sheets, respectively. The exponential factors describe the decay of the hopping
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energies with respect to the distance. The empirical parameter r0 is used to characterise the decay
of the electron hopping. It is estimated to be r0 ≈ 0.184

√
3acc where acc ≈ 1.42Å is the distance

between two nearest carbon atoms. The scalar products of the vector Ri j connecting two lattice
nodes i and j and the unit vector ez defining the z direction perpendicular to the graphene surface
accounts for the angle-dependence of the orbital coupling. From Eq. (24) we see that when i
and j belong to the same layer, Ri j is perpendicular to ez so that we obtain the intra-layer hopping
tν
i j =Vppπ exp[−(Ri j−acc)/r0], otherwise we get tνν̄

i j . In this work, for simplicity we ignore effects
of the graphene sheet curvature [31, 32]. We thus assume the spacing between the two layers is
about d ≈ 3.35Å and set the onsite energies V σ

i to be zero.8 H. ANH LE, V. THUONG NGUYEN, V. DUY NGUYEN, S. TA HO AND V. NAM DO

Fig. 1. Atomic configuration of the twisted bilayer graphene with the twist angle of 30◦.
The twisting axis is perpendicular to the lattice plane and goes through the center of the
hexagonal ring of carbon atoms. This axis is also the 12-fold rotational symmetry ele-
ment. The atomic lattice shows the formation of patterns similar to the six-petal flowers;
some of which are remarked by the blue circles to highlight the 12-fold rotational sym-
metry.
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hexagonal ring of carbon atoms. This axis is also the 12-fold rotational symmetry ele-
ment. The atomic lattice shows the formation of patterns similar to the six-petal flowers;
some of which are remarked by the blue circles to highlight the 12-fold rotational sym-
metry.

III. RESULTS AND DISCUSSION

III.1. Discussion of computational technique
We discuss in this subsection essential technical issues involving the implementation of the

method presented above. First of all, let’s discuss how to realize the action of a Hamiltonian Ĥ
on an electron state. In principle, in terms of 2N basis vectors {|ν , j〉,ν = 1,2; j = 1, . . . ,N} an
electronic state of TBGs and the Hamiltonian are represented by a 2N-dimension vector and a
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2N×2N matrix, respectively. The action of Ĥ on a state |ψ〉 should not be implemented simply
by taking the conventional matrix-vector multiplication. We should notice that the tight-binding
Hamiltonian is a sparse matrix because of the rapid decay of the electronic hopping parameters.
Additionally, since c†

ν icδ j|µ,k〉 = δµδ δ jk|ν , i〉, we directly obtain an expression for the matrix-
vector action Ĥ |ν , j〉 as follows:

Ĥ |ν , j〉= ∑
i( j)

tν
i j|ν , i〉+V ν

j |ν , j〉+∑
i( j)

t ν̄ν
i j |ν̄ , j〉, (25)

where the sum over the i index is taken over the lattice nodes around the node j. Numerically, the
realization of this equation is straightforward. The number of arithmetic operations needed for the
Ĥ |ψ〉 action is linearly scaled by the dimension number of the state vectors, i.e., O(2N), rather
than O((2N)2) of the conventional matrix-vector multiplication.

Next, we address on the rescaling of the Hamiltonian. To do so, we first determine the
spectrum width W of Ĥ . We use the power method for the estimation of the largest absolute
eigenvalue of Ĥ . Starting from a vector |b1〉 = |ν , j〉 we generate a series of vectors |bk〉 =
Ĥ |bk−1〉 and then calculate the quantities µk = 〈bk|Ĥ |bk〉/〈bk|bk〉. By checking the convergence
of the series µk we can obtain the value of |λmax| ≈ µk. The spectrum width W of Ĥ is hence
chosen to be slightly larger than 2|λmax| to ensure that the spectrum of ĥ completely lies in the
interval (−1,1). The value of W should not be chosen much largely than 2|λmax| because if it
is, the spectrum width of ĥ become too narrow. The energy resolution η therefore requires to be
refined. It thus leads to the increase of the numerical computational cost.

The two technical points discussed above are practically invoked to calculate a series of
Chebyshev vectors |φm〉 using Eq. (11) with the starting state |φ1〉= |ν , j〉. We should notice that,
though Eq. (12) is exact, we cannot numerically implement the summation of an infinite series of
terms. We, therefore, have to approximate it by making a truncation, keeping M first important
terms. Together with the approximation of the finiteness of the Hilbert space of 2N-dimension, we
now discuss the effects of the two computational parameters N and M.

We present in Fig. 2 the variation of the time-autocorrelation function Cν j(t) obtained for
three square samples of the AB-stacking system of the size L = 100, 200 and 300 nm. These
samples contain the total (2N) number of lattice nodes of 1 527 079, 6 108 315, and 13 743 708,
respectively. For each sample, we display the function Cν j(t) resulted from the calculation using
three different values M1 <M2 <M3 for the number of the Chebyshev expansion terms in Eq. (12).
The red, blue and green curves are for M1,M2 and M3, respectively. We observe that the obtained
data for Cν j(t) behave the oscillation with respect to time. The red curve is coincident with the
blue curve in a short evolution time range, and the blue curve is coincident with the green curve
in a longer evolution time range. These numerical calculation data obviously demonstrate the
fact that keeping as many as possible the Chebyshev terms in Eq. (12) validates the evolution of
electronic states in a large time range. However, we find that the evolution time range cannot be
infinitely enlarged by increasing M. When M is increased to a certain value, said Mcuto f f , it leads
to the unphysical behavior of Cν j(t) as the increase of the oscillation amplitude after a certain
time, said tcuto f f . Continuously increasing M does not prolong tcuto f f . Mcuto f f is thus the minimal
value that defines the longest tcuto f f . Data are shown in Fig. 2, however, reveals that both tcuto f f
and Mcuto f f can be increased by enlarging the sample size L. We performed the calculation for a
series of samples of different size to collect data for the relationship of Mcuto f f and L and of tcuto f f
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Fig. 2. The time auto-correlation function C(t) calculated for three square AB samples
of different size. For the sample with L = 100 nm, the curves in red, blue and green are
obtained for M = 1001,1501 and 3001, respectively. For the sample with L = 200 nm,
the curves in red, blue and green are obtained for M = 1001,3001 and 5001, respectively.
For the sample with L = 300 nm, the curves in red, blue and green are obtained for M =
2001,4001 and 6001, respectively. The time cutoff for the three samples is determined to
be about 85, 168 and 260 fs, respectively.

only 4 inequivalent lattice nodes A1, B1, A2 and B2. Here A2 is on top of B1, and B2 is on the
position of the center of the hexagonal ring A1−B1 of the bottom graphene layer. The electronic
structure of the AB-stacking configuration was commonly studied by various methods, including
the ones based on first principles and on empirical pseudo-potential and tight-binding models [34].
For the aim of validating the data obtained by the presented method here, we calculated the DOS
of the AB-stacking configuration by exactly diagonalizing Hamiltonian (23). The obtained data
are presented in Fig. 5 as the thick pink curve. The figure shows the consistency of the data
obtained by two methods. It should be noted that the blue curve is obtained by averaging over
the local density of states ρν j(E) at 4 atomic sites in the unit cell, i.e., ν = 1,2 and j = 1,2.
Computationally, in order to obtain ρν j(E) we need to perform an integral over only the time
variable of the time correlation function Cν j(t). Meanwhile, for the exact diagonalization method
we need to perform the summation of ∑n,k δ [E−En(k)]/Nk, where n = 1,2,3 and 4 and Nk is the
number of k points defined by appropriately meshing the Brillouin zone. Though straightforward,
the calculation of the sum over k is expensive because it requires to approximate the delta-Dirac
function. We solved this problem through the retarded Green function. A positive number γ is

Fig. 2. The time auto-correlation function C(t) calculated for three square AB samples
of different size. For the sample with L = 100 nm, the curves in red, blue and green are
obtained for M = 1001,1501 and 3001, respectively. For the sample with L = 200 nm,
the curves in red, blue and green are obtained for M = 1001,3001 and 5001, respectively.
For the sample with L = 300 nm, the curves in red, blue and green are obtained for M =
2001,4001 and 6001, respectively. The time cutoff for the three samples is determined to
be about 85, 168 and 260 fs, respectively.

and Mcuto f f . In Fig. 3 we display the obtained data. The figure clearly shows the linear law with
the slope factors of 0.066 for the L−Mcuto f f line and 0.057 for the tcuto f f −M line. These results
show the linearly scaled cost O(N) of the presented method.

The unphysical behavior of Cν j(t) must be removed in the calculation of physical quantities.
For the local density of states ρν j(E), for instance, according to Eq. (22) we have to deal with an
infinite integral over time. Theoretically, a factor of exp(−ηt) is usually introduced to ensure
the convergence of the integral. In fact, with an appropriate positive value of η , this factor is a
decay function of t > 0, so it plays the role of eliminating the contribution of Cν j(t) at large t
to the integral value. Physically, the value of η should be in the order of the energy resolution,
about 10−3 eV, but this value is too small to suppress the behavior of Cν j(t). Practically, in order
to suppress the unphysical behavior of Cν j(t) after t > tcuto f f , we usually need a much larger
value for η . In Fig. 4 we display the behaviour of the function Cν j(t) multiplied by the factor
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thus introduced as the spectrum smearing parameter in the Green function. In order to decrease η ,
i.e., increasing the spectrum resolution, we need to finely meshed the Brillouin zone. The number
of the k-points Nk is therefore very large. Practically, we used γ = 5×10−3 and Nk = 1248971.
It results in the pink curve with visible fluctuations.

The difference of the local density of states ρν j(E) on the nodes A2 and B2 on the same
graphene layer (ν = 2) are shown in Figure 5 as the green and moss-green curves. It is clearly
realized that the difference is significant in the energy intervals around the Fermi energy level
EF = 0 and the positions of the van Hove singularity peaks, i.e., at E = ±|Vppπ |, of the energy
spectrum of monolayer graphene. In the former energy interval (−Vppσ ,Vppσ ), the density of
states at the A2 node linearly depends on the energy, and hence vanished at EF = 0 eV, while that
at the B2 node is finite. By decreasing the value of Vppσ the density of states at the B2 node is
reduced and approaches to that at the A2 node. The difference of the local density of states at
different atomic nodes obviously is the effect of the interlayer coupling. In other words, it is said
that the interlayer coupling causes the inequivalence of the atoms at the A and B lattice nodes in the
AB-stacking configuration. It should be noticed that, in this work, we considered only the intra-
and inter-layer hopping of electron occurring between carbon atoms in the distance of r = acc and
d ≤ r <

√
d2 +a2

cc, respectively, i.e., taking only the nearest-neighbor coupling, but it is not the
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size L, and (b) the cut-off evolution time tcuto f f on the number of Chebyshev terms M.
The blue lines denote the fitting lines with the equations shown in the corresponding
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exp(−ηt) with η = 3×10−2, see the green curve. Another scheme for eliminating the unphysical
behavior of Cν j(t) at large evolution time is to use the factor of exp(−δ t2) [33]. This factor is
a function decaying much more rapidly than the one exp(−ηt). However, it results in the strong
reduction of oscillation amplitude of this function in the range of t < tcuto f f (see the blue curve
in Fig. 4 with δ = 2× 10−2). Consequently, it yields a less accurate value for the local density
of states. In our calculation, instead of introducing a factor like exp(−ηt) or exp(−δ t2) we use
the Heaviside function θ(tcuto f f − t) to truncate the contribution of Cν j(t) from t > tcuto f f . This
technique actually transforms Eq. (22) from the infinite integral into a definite one with the upper
limit tcuto f f . In principle, we need to enlarge the value of tcuto f f to obtain the value of ρν j(E) as
much precise as possible. To compromise the accuracy of the calculation and the computational
time and computer resources, the results presented in Fig. 3 are the thumb rule for setting the value
for the two computation parameters L and M and for estimating tcuto f f .

The dependence of Cν j(t) on M and L can be physically understood. Indeed, the replace-
ment of the infinite expansion of the time-evolution operator Û (t) by a finite sum beaks the unitary
property of this operator. It results in the non-preservation of the probability conservation, i.e. the
vector norm. This loss is one of the origins of the unphysical behavior of Cν j(t). Another im-
portant origin lies in the finiteness of lattice samples used to perform the calculation. Physically,
assuming the initial state |ψ(t = 0)〉 localizes at a lattice node in the center of a sample, under
the action of Û (t) the wave develops and spreads over the sample to the edges. The periodic and
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limitation of the presented method. We also calculate the LDOS and DOS of the AA-stacking
configuration but do not show and discussed here.

We now discussed the density of states of electrons in the special twisted bilayer graphene
with the twist angle of 30◦. The data is displayed in Figure 5 as the red solid curve. We shift
it upward to separate the curves. We observe the appearance of many sub-peaks of DOS in the
energy ranges around ±|Vppπ |, i.e., containing the two van Hove peaks of DOS of the monolayer
graphene (the black curve). The appearance of many DOS-peaks can be elucidated as the result of
the folding of energy surfaces due to the enlarging of the unit cell of the TBG lattice in comparison
with the AB-stacking configuration. It also reflects the effect of the interlayer coupling, not in
the whole, energy range, but in certain narrow ones. Different from the case of AB-stacking
configuration, the DOS of the θ = 30◦ TBG configuration in the energy range around the charge
neutrality level EF = 0 is coincident with that of monolayer graphene. These behaviors suggest that
in the TBG configuration, the interlayer coupling does not manifest uniformly in the whole energy
range, but dominant in the energy range around ±|Vppπ|, and less in the range of [−Vppσ ,Vppσ ].
It should be remembered that the atomic lattice of this TBG configuration is quasi-crystalline, see
Fig. 1. The electronic structure of this configuration, however, has not yet theoretically studied
because the lattice has no translational symmetry. Though the electronic structure of the TBG
configurations with modest and tiny twist angles has been studied, it was usually realized using the
exact diagonalization method for commensurate configurations. In these cases, the atomic lattices

Fig. 4. The modification of the original time auto-correlation function Cν j(t) (the red
curve) to eliminate the unphysical behaviour for t > tcuto f f . The green and blue curves
are obtained by multiplying Cν j(t) with the weight factors exp(−ηt) with η = 3×10−2,
and exp(−δ 2t2) with δ = 2×10−2, respectively.

rigid boundary conditions result in the same effect that the value of the wave at a lattice node in-
side the sample is multiple times contribute due to the wave reflection. Increasing the sample size,
it increases the time that the wave reaches the edges and thus weaken the effects of the reflection.

III.2. Electronic structure and charge distribution in a quasi-crystalline bilayer graphene
In this subsection, we first validate the correctness and the efficiency of the presented

method for the DOS calculation. We will present and discussed data for a familiar and typical
bilayer graphene system before doing with the generic twisted bilayer graphene system.

Figure 5 shows the density of states of electrons in the AB-stacking configuration. This is a
special configuration of the bilayer graphene in the meaning that the stacking is commensurate and
the atomic lattice is defined by a unit cell with the smallest area of 3

√
3a2

cc. The cell contains only
4 inequivalent lattice nodes A1, B1, A2 and B2. Here A2 is on top of B1, and B2 is on the position
of the center of the hexagonal ring A1−B1 of the bottom graphene layer. The electronic structure
of the AB-stacking configuration was commonly studied by various methods, including the ones
based on first principles and on empirical pseudo-potential and tight-binding models [34]. For
the aim of validating the data obtained by the presented method here, we calculated the DOS of
the AB-stacking configuration by exactly diagonalizing Hamiltonian (23). The obtained data are
presented in Fig. 5 as the thick pink curve. The figure shows the consistency of the data obtained by
two methods. It should be noted that the blue curve is obtained by averaging over the local density
of states ρν j(E) at 4 atomic sites in the unit cell, i.e., ν = 1,2 and j = 1,2. Computationally,
in order to obtain ρν j(E) we need to perform an integral over only the time variable of the time
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Fig. 5. The density of states of electrons in the AB-stacking bilayer graphene (the blue
and pink curves) and in the TBG configuration with the twist angle θ = 30◦ (the red
curve, which is shifted upward to separate the curves). The green and moss-green curves
respectively are the local density of states in the AB-system at the lattice nodes A2 (on
top of the B1 node) and B2 on the center of the A1−B1 hexagonal ring. The black curve
is for the monolayer graphene.

can be defined by a unit cell but it is usually large, containing a large number of inequivalent lattice
nodes inside. One should note that the cost of diagonalizing a matrix is O((2N)3), where 2N
denotes the matrix size. It means that the conventional approach is really expensive. Meanwhile,
the calculation based on effective models though efficient is just applicable in the approximation
of long wavelength. It thus ignores, in general, the discrete nature of the TBG lattice.

One of the strong points of the presented method is the potential to calculate local infor-
mation of an electronic system in real space. Particularly, we obtained the local density of states
ρν j(E) of electron on a set of about 450 lattice nodes of the TBG configuration with θ = 30◦. The
data shows the variation of ρν j(E) from node to node. It suggests a fluctuation of the electron
density on the lattice nodes. We thus performed the calculation for the electron density ne

ν j on
each lattice node using the formula:

ne
ν j =

∫ +∞

−∞
dEρν j(E) f

(
E−EF

kBT

)
=
∫ EF

−∞
dEρν j(E) (26)

where f (x) is the Fermi-Dirac function which determines the occupation probability of electrons
in a state with energy E. The last equation is given in the limit of zero temperature due to the

Fig. 5. The density of states of electrons in the AB-stacking bilayer graphene (the blue
and pink curves) and in the TBG configuration with the twist angle θ = 30◦ (the red
curve, which is shifted upward to separate the curves). The green and moss-green curves
respectively are the local density of states in the AB-system at the lattice nodes A2 (on
top of the B1 node) and B2 on the center of the A1−B1 hexagonal ring. The black curve
is for the monolayer graphene.

correlation function Cν j(t). Meanwhile, for the exact diagonalization method we need to perform
the summation of ∑n,k δ [E−En(k)]/Nk, where n = 1,2,3 and 4 and Nk is the number of k points
defined by appropriately meshing the Brillouin zone. Though straightforward, the calculation of
the sum over k is expensive because it requires to approximate the delta-Dirac function. We solved
this problem through the retarded Green function. A positive number γ is thus introduced as the
spectrum smearing parameter in the Green function. In order to decrease η , i.e., increasing the
spectrum resolution, we need to finely meshed the Brillouin zone. The number of the k-points Nk
is therefore very large. Practically, we used γ = 5×10−3 and Nk = 1248971. It results in the pink
curve with visible fluctuations.

The difference of the local density of states ρν j(E) on the nodes A2 and B2 on the same
graphene layer (ν = 2) are shown in Fig. 5 as the green and moss-green curves. It is clearly realized
that the difference is significant in the energy intervals around the Fermi energy level EF = 0 and
the positions of the van Hove singularity peaks, i.e., at E = ±|Vppπ |, of the energy spectrum of
monolayer graphene. In the former energy interval (−Vppσ ,Vppσ ), the density of states at the
A2 node linearly depends on the energy, and hence vanished at EF = 0 eV, while that at the B2
node is finite. By decreasing the value of Vppσ the density of states at the B2 node is reduced
and approaches to that at the A2 node. The difference of the local density of states at different
atomic nodes obviously is the effect of the interlayer coupling. In other words, it is said that
the interlayer coupling causes the inequivalence of the atoms at the A and B lattice nodes in the
AB-stacking configuration. It should be noticed that, in this work, we considered only the intra-
and inter-layer hopping of electron occurring between carbon atoms in the distance of r = acc and
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d ≤ r <
√

d2 +a2
cc, respectively, i.e., taking only the nearest-neighbor coupling, but it is not the

limitation of the presented method. We also calculate the LDOS and DOS of the AA-stacking
configuration but do not show and discussed here.

We now discussed the density of states of electrons in the special twisted bilayer graphene
with the twist angle of 30◦. The data is displayed in Fig. 5 as the red solid curve. We shift it upward
to separate the curves. We observe the appearance of many sub-peaks of DOS in the energy ranges
around ±|Vppπ |, i.e., containing the two van Hove peaks of DOS of the monolayer graphene (the
black curve). The appearance of many DOS-peaks can be elucidated as the result of the folding
of energy surfaces due to the enlarging of the unit cell of the TBG lattice in comparison with the
AB-stacking configuration. It also reflects the effect of the interlayer coupling, not in the whole,
energy range, but in certain narrow ones. Different from the case of AB-stacking configuration,
the DOS of the θ = 30◦ TBG configuration in the energy range around the charge neutrality
level EF = 0 is coincident with that of monolayer graphene. These behaviors suggest that in
the TBG configuration, the interlayer coupling does not manifest uniformly in the whole energy
range, but dominant in the energy range around ±|Vppπ|, and less in the range of [−Vppσ ,Vppσ ].
It should be remembered that the atomic lattice of this TBG configuration is quasi-crystalline, see
Fig. 1. The electronic structure of this configuration, however, has not yet theoretically studied
because the lattice has no translational symmetry. Though the electronic structure of the TBG
configurations with modest and tiny twist angles has been studied, it was usually realized using the
exact diagonalization method for commensurate configurations. In these cases, the atomic lattices
can be defined by a unit cell but it is usually large, containing a large number of inequivalent lattice
nodes inside. One should note that the cost of diagonalizing a matrix is O((2N)3), where 2N
denotes the matrix size. It means that the conventional approach is really expensive. Meanwhile,
the calculation based on effective models though efficient is just applicable in the approximation
of long wavelength. It thus ignores, in general, the discrete nature of the TBG lattice.

One of the strong points of the presented method is the potential to calculate local infor-
mation of an electronic system in real space. Particularly, we obtained the local density of states
ρν j(E) of electron on a set of about 450 lattice nodes of the TBG configuration with θ = 30◦. The
data shows the variation of ρν j(E) from node to node. It suggests a fluctuation of the electron
density on the lattice nodes. We thus performed the calculation for the electron density ne

ν j on
each lattice node using the formula:

ne
ν j =

+∞∫

−∞

dEρν j(E) f
(

E−EF

kBT

)
=

EF∫

−∞

dEρν j(E), (26)

where f (x) is the Fermi-Dirac function which determines the occupation probability of electrons
in a state with energy E. The last equation is given in the limit of zero temperature due to the
step feature of the Fermi-Dirac function. The fluctuation of the electron density is then obtained
by δne

ν j = ne
ν j−〈ne

ν j〉, where 〈ne
ν j〉 is the average value. In Fig. 6 we present the obtained result.

We use the blue/green solid circles to denote the nodes with δne
ν j > 0 and the red/black empty

circles for the nodes with δne
ν j < 0. The radius of these circles is proportional to the value of ne

ν j.
Surprisingly, we observe a typical pattern of the electron density fluctuation on the atomic lattice
of the considered TBG configuration. The pattern of the hexagonal ring of δne

ν j < 0 is formed
consistently with the atomic pattern of the TBG lattice seen in Fig. 1. This interesting result
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Fig. 6. Distribution of the electron density fluctuation δne
ν j = ne

ν j−〈ne
ν j〉 (ν = 1,2) on

the lattice nodes of the quasi-crystal TBG configuration with the twist angle of 30◦. The
red/black-empty and blue/green-solid circles denote the nodes at which δne

1/2 j < 0 and
δne

1/2 j > 0, respectively.

step feature of the Fermi-Dirac function. The fluctuation of the electron density is then obtained
by δne

ν j = ne
ν j−〈ne

ν j〉, where 〈ne
ν j〉 is the average value. In Fig. 6 we present the obtained result.

We use the blue/green solid circles to denote the nodes with δne
ν j > 0 and the red/black empty

circles for the nodes with δne
ν j < 0. The radius of these circles is proportional to the value of ne

ν j.
Surprisingly, we observe a typical pattern of the electron density fluctuation on the atomic lattice
of the considered TBG configuration. The pattern of the hexagonal ring of δne

ν j < 0 is formed
consistently with the atomic pattern of the TBG lattice seen in Fig. 1. This interesting result
may suggest further studies of the electronic effects on other physical properties, for instance, the
adhesion between the two graphene layers.

IV. CONCLUSIONS

We have presented a calculation technique that is generic and powerful to determine effi-
ciently the electronic properties of materials in which the long-range order of atoms arrangement
may be broken. The essence of the presented method lies in the analysis of the evolution in time of
electronic states in the atomic lattice of considered systems. Technically, the method is based on
a three-point scheme. The first point is to represent a physical quantity in term of an appropriate
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may suggest further studies of the electronic effects on other physical properties, for instance, the
adhesion between the two graphene layers.

IV. CONCLUSIONS

We have presented a calculation technique that is generic and powerful to determine effi-
ciently the electronic properties of materials in which the long-range order of atoms arrangement
may be broken. The essence of the presented method lies in the analysis of the evolution in time of
electronic states in the atomic lattice of considered systems. Technically, the method is based on
a three-point scheme. The first point is to represent a physical quantity in term of an appropriate
time correlation function, which is usually defined as the projection of a time-dependent state onto
another one. The second point is the use of Chebyshev polynomials to specify the time evolution
operator. The third point is the employment of a stochastic technique to evaluate the trace of Her-
mitian operators. For the last point, we proposed an algorithm of sampling states localizing at the
atomic positions for the evaluation of trace, instead of using random phase states as initial states.
This algorithm allows obtaining the local information of the electronic system as the local time
auto-correlation functions and the local density of states. We discussed important technical issues
involving the implementation of the method through the calculation of the electronic structure of
the bilayer graphene system. We showed the linear scaling law of the computational cost. We
calculated the density of states and the electron density in a special twisted bilayer graphene con-
figuration with the quasi-crystalline atomic structure. We observed the formation of many peaks
in the picture of DOS as the result of the strong coupling of two graphene layers in the energy
ranges containing the two van Hove peaks of DOS in the case of monolayer graphene. In the
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energy range around the charge neutrality level, the DOS of the θ = 30◦ TBG configuration is
identical to the one of graphene. It implies the effective decoupling of Dirac fermions in the two
graphene layers. We found a pattern of the fluctuation of the electron density on the TBG configu-
ration. This interesting finding may suggest further studies of physical properties of the considered
special quasi-crystalline TBG configuration.
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