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Abstract. Oxygen vacancy diffusion in yttria-doped ceria (YDC) and yttria-stabilized zirconia
(YSZ) are investigated using statistical moment method, including the anharmonicity effects of
thermal lattice vibrations. The expressions of oxygen vacancy-dopant association energy and
oxygen vacancy migration energy are derived in an explicit form. Calculation of the vacancy
migration energy enables us to evaluate the important role of dopant cation on the oxygen vacancy
diffusion. The dependences of the vacancy activation energies and diffusion coefficients in YDC
and YSZ systems on dopant concentration are also discussed in detail. The calculated results are
in good agreement with the other theoretical and experimental results.
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I. INTRODUCTION

Solid oxide fuel cells (SOFCs) are electrochemical devices that produce electricity directly
from chemical energy. Nowadays, SOFCs have been widely used in automobile and power sources
because of high efficiency, long operation life and low pollution [1]. Yttria-doped ceria (YDC) and
yttria-stabilized zirconia (YSZ) with high ionic conductivity are the most popular materials used
as the electrolytes for SOFCs operation in the intermediate temperature range. In the systems,
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current is carried by oxygen vacancies that are generated to compensate for the lower charge of
dopant cations [2, 3].

To understand the mechanism of oxygen vacancy transport in YDC and YSZ, a significant
number of theoretical and experimental studies have been carried out. For YDC, H. Yoshida et
al. [4] using extended X-ray absorption fine structure (EXAFS) measurements suggested that the
oxygen vacancies tend to be trapped by the dopant cations. Fei Ye et al. [5] showed that the
trapping effect arises from the formation of the defect cluster due to the associations between
oxygen vacancies and dopant cations. These clusters can inhibit the hopping of oxygen vacancies
and hence, decrease the diffusion coefficient of doped ceria. Further, the oxygen vacancy ordering
in nano-sized domains with higher degree could block the vacancy transport more effectively [6].
The results obtained by first principle density function theory (DFT) calculations [7] revealed that
determining the ionic conductivity in doped ceria is strongly affected by the lattice deformation.
For YSZ, the diffusion coefficient of O2− ions is apparently much larger than that of cations and
decreases with an increase of the dopant concentration [8]. A study using ab initio and classical
molecular dynamics (MD) simulations [9] suggested that the effect of vacancy-vacancy interaction
could play an important role in determining the vacancy diffusion coefficient. More recently, A.
Kushima et al. [10] showed the dependences of oxygen vacancy migration paths and edges on
lattice strain. A decrease of migration edge arises from the increase of migration space and the
weakening of vacancy-dopant associations. Remarkable, numerous theoretical studies [11,13,14]
have shown that, the presence of dopant ions in the common edge of two adjacent tetrahedra
could limit available pathways for the oxygen vacancy diffusion in YDC and YSZ due to forming
high-energy edges.

The diffusion coefficient of CeO2 with fluorite structure was investigated by statistical mo-
ment method (SMM) including the anharmonicity effects of thermal lattice vibrations [15]. The
oxygen vacancies are thermally generated and the calculated vacancy activation energy equals
three-eighth the interaction potential of an oxygen ion. In YDC and YSZ, the most oxygen vacan-
cies are generated due to doping and therefore, the vacancy activation energies depend strongly
on the dopant concentration. The present paper provides the explicitly analytic expression of the
vacancy activation energy, taking into account the role of dopant cations using the SMM. The
dependences of the vacancy activation energies and diffusion coefficients on the dopant concen-
tration are discussed in detail. This study provides more insight into the atomistic level picture of
the vacancy diffusion mechanism in solid oxide electrolyte materials.

II. THEORY

II.1. Free energy
Cubic CeO2 and ZrO2 have the fluorite crystal structure with eight cations (Ce4+, Zr4+)

occupying face-centered cubic ( f cc) lattice sites and four O2− ions occupying cubic sublattice
sites. Helmholtz free energy of RO2 system (R = Ce, Zr) was written by taking into account the
configuration entropies Sc, via the Boltzmann relation as [16]

ΨRO2 =CRΨR +COΨO −T Sc, (1)

where CR, CO denote concentrations of R4+, O2− ions, respectively, and ΨR, ΨO are the Helmholtz
free energies of R4+, O2− ions, respectively. The configuration entropies Sc refer to the number of
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ways that ions pack together in the crystal lattice. In the harmonic approximation, ΨR, ΨO have
the forms

ΨR =UR
0 +3NRθ

[
xR + ln(1− e−2xR)

]
, (2)

ΨO =UO
0 +3NOθ

[
xO + ln(1− e−2xO)

]
, (3)

with UR
0 , UO

0 represent the sums of effective pair interaction energies for R4+, O2− ions, respec-

tively, and xR =
h̄ωR

2θ
, xO =

h̄ωO

2θ
, θ = kBT (kB-the Boltzmann constant), and ωR (or ωO) is the

atomic vibration frequency of R4+ (or O2−) ions

kR =
1
2 ∑

i

(
∂ 2ϕR

i0

∂u2
iβ

)
eq
= m∗

ω
2
R, kO =

1
2 ∑

i

(
∂ 2ϕO

i0

∂u2
iβ

)
eq
= m∗

ω
2
O, (4)

where β = x,y, or z, and uiβ is β -Cartesian components of the displacement of i-th ion, ϕR
i0 (or ϕO

i0)
is the interaction potential between the 0-th R4+ (or O2−) and the i-th ions, and m∗ is the average
atomic mass of the system, m∗ =CRmR +COmO.

Doping CeO2 and ZrO2 with yttria (Y2O3) replaces R4+ by Y3+ ions on the f cc cation
lattice and produces an oxygen vacancy for every two Y3+ ions to satisfy charge neutrality of the
crystal lattice. If the yttrium concentration in YDC and YSZ systems is denoted by x and there are
N cations in the crystal lattice, then the numbers of R4+, Y3+, O2− ions and the oxygen vacancies
in YDC and YSZ are NR = N(1−x), NY = Nx, NO = N(2−x/2), Nva = Nx/2, respectively. Thus,
the general chemical formula of YDC and YSZ systems can be written as R1−xYxO2−x/2.

The Helmholtz free energy of R1−xYxO2−x/2 system can be derived from the Helmholtz
free energy of RO2−x/2 system because of substituting NY Y3+ ions into the posititons of R4+ ions
on the f cc cation lattice of RO2−x/2 system. Now, let us consider the simplest case that one R4+

ion is replaced by one Y3+ ion in RO2−x/2 system. This substitution causes the change of the
Gibbs free energy of the system as

g f
v ≈−uR

0 +ψY , (5)

with uR
0 is the average interaction potential of a R4+ ion in RO2−x/2 system, ψY is the Helmholtz

free energy of a Y3+ ion in R1−xYxO2−x/2 system. Because R1−xYxO2−x/2 system is created by
the substitution of NY Y3+ ions for NY R4+ ions in RO2−x/2 system, then the Gibbs free energy of
R1−xYxO2−x/2 system can be determined by the Gibbs free energy of RO2−x/2 system, G0,

G = G0 +NY g f
v −T S∗c , (6)

with S∗c is the configuration entropies of R1−xYxO2−x/2 system.
Substituting Eq. (5) into Eq. (6), one obtains the following formula

G = G0 +NY
(
−uR

0 +ψY
)
−T S∗c = ΨRO2−x/2 +NY

(
−uR

0 +ψY
)
+PV −T S∗c , (7)

with P is the hydrostatic pressure, V is the volume of R1−xYxO2−x/2 system. From Eq. (7), the
Helmholtz free energy of R1−xYxO2−x/2 system can be now derived

Ψ = ΨRO2−x/2 +NY
(
−uR

0 +ψY
)
−T S∗c = ΨRO2−x/2 +ΨY −NY uR

0 −T S∗c , (8)
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here, ΨRO2−x/2 is determined by Eqs. (1) – (3) with CR = 1/3, CO =(2− x/2)/3, ΨY is the total
Helmholtz free energy of Y3+ ions. Because the sites of f cc lattice are occupied by Y3+ ions,
then the expression of ΨY is the same form as that of ΨR

ΨY =UY
0 +3NY θ

[
xY + ln(1− e−2xY )

]
, (9)

with UY
0 is the total interaction potential of Y3+ ions in R1−xYxO2−x/2 system and xY =

h̄ωY

2θ
, with

ωY is the vibration frequency of Y3+ ions in R1−xYxO2−x/2 system

kY =
1
2 ∑

i

(
∂ 2ϕY

i0

∂u2
iβ

)
eq
= m∗∗

ω
2
Y , (10)

with m∗∗ is the average atomic mass of R1−xYxO2−x/2 system, m∗∗ =CRmR +CY mY +COmO.

II.2. The vacancy diffusion coefficient
The vacancy diffusion coefficient of CeO2 was derived by V.V. Hung et al. [15]

D = D0exp
(
− Ea

kBT

)
, (11)

where Ea is the vacancy activation energy and the pre-exponential factor of the diffusion coeffi-
cient, D0, is given as

D0 =
n1 f νr2

1exp
(

S f
v

kB

)
kB

, (12)

where n1 is the number of O2− ions at the first nearest neighbor positions with regard to the oxygen
vacancy, the factor f is correlation factor which represents the deviation from randomness of the
ionic jumps, ν is the characteristic lattice frequency of O2− ions, r1 is the shortest distance between
two lattice sites containing O2− ions, S f

v is entropy for the formation of an oxygen vacancy. We
will use this formula to calculate the diffusion coefficients of YDC and YSZ systems.

For pure CeO2 and ZrO2, the vacancy concentration is very low due to the high vacancy
formation energy. The vacancy activation energy is the sum of the vacancy formation energy
E f and the vacancy migration energy Em. For YDC and YSZ, the oxygen vacancies and Y3+

ions are assumed as charged point defects with effective charges as +2 and -1, respectively [17,
18]. Therefore, the bonds are created between the oxygen vacancies and Y3+ ions with vacancy-
dopant association energy Eass and prevent the migration of the oxygen vacancies. Hence, the
number of the mobility oxygen vacancies is determined by the vacancy-dopant association energy.
Consequently, the vacancy activation energy is determined as the sum of Eass and Em

Ea = Eass +Em. (13)

In the next section, we will present the analytic expressions to calculate the vacancy-dopant
association energy and the vacancy migration energy.
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II.2.1. The vacancy-dopant association energy
The associations between the oxygen vacancies and Y3+ ions form the charged defect clus-

ters or electrically neutral clusters [19]. In these clusters, the oxygen vacancies tend to occupy
either the first nearest neighbor sites (1NN) or the second nearest neighbor sites (2NN) to Y3+

ions.
The vacancy-dopant association energy in doped ceria and zirconia was calculated by atom-

istic simulation and/or MD methods [19, 20]. The association energy between an oxygen vacancy
V••

O and a Y3+ ion is the difference between the energy of the associated defect cluster V••
O -Y3+

and the energy sum of the isolated defects V••
O and Y3+

Eass =
[
Ψtotal

(
V••

O −Y3+)]− [Ψtotal (V••
O )+Ψtotal

(
Y3+)] . (14)

To calculate the vacancy-dopant association energy using SMM, one considers the RNRYNY ONO

system (called as the system I) with the Helmholtz free energy ΨRNR YNY ONO
, containing Nva oxy-

gen vacancies and NY Y3+ ions at the associated state. In these system, the replacing a R4+ by
a Y3+ ion will create the RNR−1YNY+1ONO system (called as the system II) with the Helmholtz
free energy ΨRNR−1YNY +1ONO

. The system II also has the associations between NY Y3+ ions and Nva

oxygen vacancies but unlike the system I, this system has more an Y3+ ion at the isolated state.
It is noted that each oxygen vacancy is associated with two Y3+ ions because the substitution of
Y3+ ions for R4+ is accompanied by the formation of an oxygen vacancy for every two Y3+ ions.
For this reason, RNR−1YNY+1ONO−1 system (called as the system III) with the Helmholtz free en-
ergy ΨRNR−1YNY +1ONO−1 has an isolated oxygen vacancy. By adding a Y3+ ion to the system III,
the RNR−2YNY+2ONO−1 system (called as the system IV) is formed with the Helmholtz free energy
ΨRNR−2YNY +2ONO−1 . In this system, (Nva +1) oxygen vacancies are associated with (NY +2) Y3+

ions. Based on Eq. (14), the vacancy-dopant association energy is determined as the Helmholtz
free energy difference between the systems containing the oxygen vacancies and Y3+ ions at the
associated state (the systems I and IV) and the systems containing the oxygen vacancies and Y3+

ions at the isolated state (the systems II and III)

Eass =
(

ΨRNR YNY ONO
+ΨRNR−2YNY +2ONO−1

)
−
(

ΨRNR−1YNY +1ONO
+ΨRNR−1YNY +1ONO−1

)
, (15)

here, the expressions of ΨRNR YNY ONO
, ΨRNR−1YNY +1ONO

, ΨRNR−1YNY +1ONO−1 , ΨRNR−2YNY +2ONO−1 are de-
termined by Eq. (8).

II.2.2. The vacancy migration energy
In YDC and YSZ systems, the oxygen vacancies hop dominantly along the <100> direc-

tion from the lattice sites [11, 13]. The movement of an oxygen vacancy between the adjacent
sites in the crystal lattice corresponds to the migration of an opposite oxygen ion in the reverse
direction. Fig. 1 presents the migration of an O2− ion from the lattice site A, across the saddle
point B and occupying a vacant site C. The states of crystal lattice before the oxygen migration
from the site A and after the oxygen diffusion to the saddle point B are called as the initial state
and the saddle point state, respectively. Thus, the energy for the vacancy migration is determined
by

Em = Ψ0 −Ψsaddle. (16)
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Fig. 1. An O2− ion hops from the lattice site A, across the saddle point B and occupies
an adjacent vacant site C.

with Ψ0 is the free energy of system at the initial state and Ψsaddle is the free energy of system
at the saddle point state. These free energies could be obtained from Eq. (8) with Eqs. (2), (3),
(9) determining the total free energies of R4+, O2−, Y3+ ions. It is required to calculate the total
interaction potentials UR

0 , UO
0 and UY

0 of R4+, O2−, and Y3+ ions, respectively, at the initial and
the saddle-point states.

a. The total interaction potentials of R4+, O2−, and Y3+ ions at the initial state

Firstly, we find the expression determining the total interaction potential of O2− ions in
RO2−x/2 system. Due to the presence of the oxygen vacancies in the crystal lattice, the interaction
potentials of O2− ions are not similar. It is required to determine the average potential energy of
an O2− ion, uO. The expression of uO is determined by the interactions between an O2− ion and
the surrounding ions

uO = uO−O +uO−R, (17)

with uO−O, uO−R are the average interaction potentials between an O2− ion and surrounding O2−

and R4+ ions, respectively.
In order to determine uO−O, one considers the i-th nearest-neighbor sites relative to a certain

oxygen vacancy, V••
O . The number of i-th nearest-neighbor sites occupied by O2− ions is bO−O

i .
In the crystal lattice, there are NO O2− ions and these ions could occupy (2N −1) the remaining
sites. Therefore, probability that a lattice site is occupied by an O2− ion as

WO−O =
NO

2N −1
. (18)

The number of O2− ions occupied the i-th nearest-neighbor sites of V••
O can be given by

cO−O
i = bO−O

i WO−O, (19)

and cO−O
i is also the number of O2− ions that have V••

O at the i-th nearest-neighbor sites. Because
the crystal lattice has Nva oxygen vacancies, then there are NvacO−O

i O2− ions having V••
O ion at
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i-th nearest-neighbor sites. Subsequently, the number of the associations of NO O2− ions with
surrounding O2− ions at the i-th nearest-neighbor sites can be written as

NO−O
i = NObO−O

i −NvacO−O
i . (20)

From Eq. (20), we derive the average number of the associations of an O2− ions with other
O2− ions at the i-th nearest-neighbour sites

nO−O
i =

NO−O
i
NO

= bO−O
i

(
1− Nva

2N −1

)
, (21)

therefore, the expression of uO−O is given by

uO−O =

(
1− Nva

2N −1

)
∑

i
bO−O

i ϕ
∗O−O
i0 , (22)

with ϕ
∗O−O
i0 is the interaction potential between the 0-th O2− ion and an ion O2− at the i-th nearest-

neighbor sites relative to the 0-th O2− ion.
In the same way, we obtain the expressions of uO−R and derive the formula of the total

interaction potential of O2− ions in RO2−x/2 system

UO
0 =

NO

2

(
∑

i
bO−R

i ϕ
∗O−R
i0 +

(
1− Nva

2N −1

)
∑

i
bO−O

i ϕ
∗O−O
i0

)
, (23)

Similar to the way of calculation for UO
0 , we have the expressions of the total interaction potential

of R4+ ions in RO2−x/2 system and the total interaction potential of Y3+ ions in R1−xYxO2−x/2
system

UR
0 =

NR

2

(
∑

i
bR−R

i ϕ
∗R−R
i0 +

(
1− Nva

2N

)
∑

i
bR−O

i ϕ
∗R−O
i0

)
, (24)

UY
0 =

NY

2

(
NR

N −1 ∑
i

bY−R
i ϕ

∗Y−R
i0 +

NY −1
N −1 ∑

i
bY−Y

i ϕ
∗Y−Y
i0 +

(
1− Nva

2N

)
∑

i
bY−O

i ϕ
∗Y−O
i0

)
, (25)

where bX−O
i (or bX−R

i , or bX−Y
i ) is the number of the i-th nearest-neighbor sites relative to X ion (X

= O2−, R4+, Y3+) that O2− (or R4+, or Y3+) ions could occupy, respectively, ϕ
∗X−O
i0 (or ϕ

∗X−R
i0 ,

or ϕ
∗X−Y
i0 ) is the interaction potential between the 0-th X ion and an ion O2− (or R4+, or Y3+) at

the i-th nearest-neighbor sites relative to this X ion, respectively.

b. The total interaction potentials of R4+, O2−, and Y3+ ions at the saddle-point state

Firstly, the average interaction potential of an O2− ion at the saddle-point state is given by

uB
O = uO +∆uO−O

O +∆u∗O, (26)

where uO is the average interaction potential of an O2− at initial state, ∆uO−O
O is the change in

the average interaction potential of an O2− ion arising from the interaction with the surrounding
O2− ions (see Appendix), and ∆u∗O is the change in the average interaction potential of an O2−
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ion arising from the interaction with the surrounding R4+ ions (denoted as ∆uO−R
O ) and Y3+ ions

(denoted as ∆uO−Y
O )

∆u∗O = ∆uO−R
O +∆uO−Y

O . (27)
Because of the oxygen movement, the interaction potentials between the diffusing oxygen

ion at the site A and surrounding R4+ and Y3+ cations are lost and more the interaction potentials
between the diffusing oxygen ion at the point B and these cations. Therefore, ∆uO−R

O and ∆uO−Y
O

could be determined as

∆uO−R
O =

ϕB
O−R −ϕA

O−R

NO
, ∆uO−Y

O =
ϕB

O−Y −ϕA
O−Y

NO
, (28)

with ϕ
A,B
O−R (or ϕ

A,B
O−Y ) are the interaction potentials between the diffusing oxygen ion O2− and

surrounding R4+ (or Y3+) ions at the sites A and B, respectively. The interaction potentials ϕ
A,B
O−R,

ϕ
A,B
O−Y depend sensitively on the configurations of the neighboring cations around the diffusing

vacancy-oxygen ion pair. There are three main configurations of R4+ and Y3+ ions at the first
neighbor sites around this diffusing pair (Fig. 2). These configurations generate three cation
edges, namely, R4+ - R4+, R4+ - Y3+ and Y3+ - Y3+.

a.The R4+ - R4+ edge b. The R4+ - Y3+ edge

c. The Y3+ - Y3+ edge

: ionY
3+

: ionR
4+

Fig. 2. Three configurations of neighboring cations around the diffusing vacancy-oxygen
ion pair with three cation edges in YDC and YSZ system in two-dimension plane.

The average interaction potentials of a R4+ ion and a Y3+ ion at the saddle-point state are
determined as

uB
R = uR +∆u∗R, uY

R = uY +∆u∗Y , (29)
where uR and uY are the average interaction potentials of a R4+ ion and a Y3+ ion at the initial
state, respectively, and ∆u∗R, ∆u∗Y are the changes in the average interaction potentials of a R4+ ion
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and a Y3+ ion due to the oxygen migration. The expressions of ∆u∗R and ∆u∗Y could be determined
by ϕ

A,B
O−R and ϕ

A,B
O−Y , respectively,

∆u∗R =
ϕB

O−R −ϕA
O−R

NR
, ∆u∗Y =

ϕB
O−Y −ϕA

O−Y

NY
. (30)

From Eqs. (26) - (30), we obtain the expressions of the total interaction potentials of O2−,
R4+, Y3+ ions at the saddle-point state

UO
saddle =UO

0 +
ϕB

O−R +ϕB
O−Y −ϕA

O−R −ϕA
O−Y

2
+

NO∆uO−O
O

2
, (31)

UR
saddle =UR

0 +
ϕB

O−R −ϕA
O−R

2
, UY

saddle =UY
0 +

ϕB
O−Y −ϕA

O−Y

2
. (32)

III. RESULTS AND DISCUSSION

The interactions between ions in YDC and YSZ systems with fluorite structure including
the long-range Coulomb interaction and the short-range interactions are described by a simple
two-body potential of the Buckingham form [19, 21]

ϕi j(r) =
qiq j

r
+Ai jexp

(
− r

Bi j

)
−

Ci j

r6 , (33)

where qi and q j are the charges of ion i and j, respectively, r is the distance between them and
Ai j, Bi j and Ci j are the empirical parameters (listed in Table 1). The first term could be summed
explicitly by using the Wolf method to turn the Coulomb interaction effectively into spherically
symmetric potentials with relatively short-ranges [22]

ui j(r) = qiq j

{
erfc(αr)

r
− erfc(αRc)

Rc
+

[
erfc(αRc)

R2
c

+
2α

π
1
2

erfc(−α2R2
c)

Rc

]
(r−Rc)

}
,r ≤ Rc, (34)

where α is the damping parameter and Rc is the cutoff radius. Based on report by P. Demontis et
al. [22], the optimum values of α and Rc are found for YDC and YSZ as αYDC = 0.31 Å−1, RYDC

c

= 11.715 Å and αYSZ = 0.34 Å−1, RYSZ
c = 10.911 Å, respectively. The values of the cutoff radius

allow us to limit the crystal lattice region for calculations. This region consists of 256 lattice sites
for cations and 512 lattice sites for O2− ions and oxygen vacancies.

Table 1. The parameters of the Buckingham potential in YDC and YSZ systems.

Material Interaction Ai j/eV Bi j/Å Ci j/eV.Å6

YDC [23]
O2−−O2− 9547.96 0.2192 32
Ce4+−O2− 1809.68 0.3547 20.40
Y3+−O2− 1766.4 0.3385 19.43

YSZ [24]
O2−−O2− 9547.96 0.224 32
Zr4+−O2− 1502.11 0.345 5.1
Y3+−O2− 1366.35 0.348 19.6
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Based on the minimum condition of the potential energy of the systems at T = 0 K, Eqs.
(23) – (25) and (31) – (32) enable us to calculate the lattice constants at the initial and saddle
point states, respectively. The lattice constants at these states in the dopant concentration range
of 0.1 - 0.4 are presented in Table 2 for YDC and Table 3 for YSZ. At the saddle point state,
we evaluate the lattice constants at three situations corresponding to the oxygen movement across
three cation edges, R4+ - R4+, R4+ - Y3+ and Y3+ - Y3+. One can see that the crystal lattice is
slightly deformed by the vacancy hopping in the overall dopant concentration. For YDC and YSZ,
the values of lattice constants at the saddle point state asaddle for the R4+ - R4+, R4+ - Y3+ cation
edges are larger than those at the initial state ainitial . However, the values of asaddle for the Y3+ -
Y3+ cation edge are smaller than those of ainitial . The larger space for the vacancy migration could
promote the diffusion process and vice versa [13]. Therefore, we predict that the oxygen vacancies
can migrate across the R4+ - R4+, R4+ - Y3+ cation edges while this transport is inhibited by the
Y3+ - Y3+ cation edge.

Table 2. The lattice constants at 0 K of YDC at the initial and saddle point states.

x 0.1 0.2 0.3 0.4 0.5

ainitial/Å 5.4091 5.4068 5.4044 5.4019 5.3993

asaddle/Å
Ce4+ - Ce4+ 5.4098 5.4075 5.4052 5.4027 5.4002

Ce4+ - Y3+ 5.4095 5.4073 5.4049 5.4025 5.3999

Y3+ - Y3+ 5.4085 5.4063 5.4040 5.4017 5.3991

Table 3. The lattice constants at 0 K of YSZ at the initial and saddle point states.

x 0.1 0.2 0.3 0.4 0.5

ainitial/Å 5.1005 5.1172 5.1347 5.1530 5.1721

asaddle/Å
Zr4+ - Zr4+ 5.1010 5.1178 5.1354 5.1537 5.1729

Zr4+ - Y3+ 5.1008 5.1176 5.1351 5.1534 5.1726

Y3+ - Y3+ 5.1001 5.1169 5.1344 5.1527 5.1718

To evaluate exactly the effect of dopant cations on the vacancy diffusion, it is required to
calculate the energies for oxygen vacancy migration across three cation edges, R4+ - R4+, R4+ -
Y3+, Y3+ - Y3+. Using the different expressions of ϕ

A,B
O−R and ϕ

A,B
O−Y in Eqs. (31), (32) for three

neighbour cation configurations in Fig. 2, we can determine the vacancy migration energies across
the cation edges. The obtained results are presented in Table 4. It is clearly seen that the vacancy
migration energies are sensitive to the cation edges. The migration energies have the smallest
values without any dopant in the cation edges, and they increase with the presence of dopant in
the edges. With the largest migration energy values, almost oxygen movement don’t take place
across the Y3+ - Y3+ edge. Therefore, we can conclude that the presence of host cation in the
cation edge promotes the vacancy hopping, while that of dopant cation in the cation edge blocks
this movement. The effect of dopant cation on the vacancy diffusion could arise from two main
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factors. First, the oxygen vacancies move in the smaller space due to the bigger ionic radius of
dopant cation compared with host cations. Second, the association between defects could trap
the oxygen vacancies and prevents them from being mobile. The calculated results using the
DFT method [11–14] have also been reported to confirm the role of dopant cation on the vacancy
migration.

Table 4. The vacancy migration energies across the R4+ - R4+, R4+ - Y3+, Y3+ - Y3+

cation edges in YDC and YSZ systems.

Em Method R4+ - R4+ R4+ - Y3+ Y3+ - Y3+

YDC
SMM 0.2334 0.7295 1.0521

DFT 0.48 [11] 0.533 [11] 0.8 [11]

0.52 [12] 0.57 [12] 0.82 [12]

YSZ
SMM 0.3625 1.0528 1.5091

DFT 0.2 [14] 1.19 [14] 1.23 [14]

0.58 [13] 1.29 [13] 1.86 [13]
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Fig. 3. The dopant concentration dependence of the calculated activation energies of
YDC at T = 773 K (a) and YSZ at T = 1000 K (b). The theoretical results using ki-
netic Monte Carlo (KMC) simulation at T > 1050 K and T < 1050 K [14], and the
experimental results around 773 K for YDC [25, 26] and 1000 K for YSZ [27] are also
displayed for comparison.

In Fig. 3, the SMM values of the vacancy activation energies are plotted as a function of the
dopant concentration in YDC at 773 K and YSZ at 1000 K. It is noted that the relation between
the yttria concentration y and the yttrium concentration x in the systems is y = x/(2− x) [13]. At
low dopant concentration, the number of high energy edges R4+ - Y3+, Y3+ - Y3+ is small and the
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activation energies are nearly equal those for the vacancy migration across the R4+ - R4+ edge. As
dopant concentration increases, the oxygen-vacancy exchange through the R4+ - Y3+, Y3+ - Y3+

edges rather than R4+ - R4+ edge can be expected to increase. Therefore, it is clearly seen that
the calculated activation energies show an upward trend with the increasing of x from 0 to 0.35.
The simulation and experimental results for the activation energies in YDC around 773 K [25,26]
and YSZ around 1000 K [14,27] are also presented in Fig. 3. These results show almost the same
tendency with the SMM results. However, the values of SMM results are slightly smaller than
those of the experimental results. This is probably caused by neglecting the role of the vacancy-
vacancy interaction. Moreover, the vacancy migration along grain boundaries in polycrystalline
samples could block the vacancy migration and increases the activation energies.

Fig. 4 presents Arrhenius plots of D vs. (1/kBT ) (Eq. 11) at the different dopant concen-
trations for the vacancy diffusion in YDC and YSZ. The diffusion coefficients increase with the
increasing temperature. The larger values of diffusion coefficients at the smaller dopant concen-
trations show that the diffusion coefficients decrease with an increase of dopant concentration.
The MD [8,21] and experimental [28,29] results also show almost the same tendency. The dopant
concentration dependence of the diffusion coefficients arises from the effect of dopant cations in
the cation edges on the oxygen-vacancy exchange. At the high dopant concentration, an increased
number of high energy edges generates the large activation energies and therefore, reduces the
vacancy diffusion coefficients. One can see that the SMM values of vacancy diffusion coefficients
are consistent with the experimental data [28, 29].
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Fig. 4. The Arrhenius plots of the diffusion coefficient D as a function of reciprocal
temperature (1/T ) at the different dopant concentration for YDC (a) and YSZ (b). The
experimental results measured at x = 0.1, 0.2, 0.4 for YDC [28] and at x = 0.214, 0.461
for YSZ [29] are presented for comparison.

IV. CONCLUSION

We have presented an analytic formulation to study the oxygen vacancy diffusion in YDC
and YSZ with fluorite structure. The present formalism takes into account the anharmonicity ef-
fects of thermal lattice vibrations and it enables us to derive the expression of vacancy activation
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energy in closed analytic forms. Our results show that the presence of dopant ions in the cation
edges restricts the oxygen vacancy migration, and the oxygen vacancy hopping across the R4+

- R4+ edge contributes predominantly to the diffusion process. Consequently, the vacancy acti-
vation energies increase with the increasing dopant concentration and lead to a decrease of the
vacancy diffusion coefficients. Our findings are in good agreement with the other theoretical and
experimental results.
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APPENDIX

The change in the average potential energy of an O2− ion for the interactions between it
and other O2− ions due to the oxygen hopping to the saddle point

To determine ∆uO−O
O in Eq. (26), we assume that when the O2− ion is at the site A, the

oxygen vacancy at the site C (Fig. 5) is occupied by an O2− ion from the crystal lattice outside by
some way. Consequently, the system has (NO +1) O2− ions, (Nva −1) oxygen vacancies and the
total potential energy of these O2− ions for the interactions between them and the other O2− ions
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is U∗
O. Analogously, the O2− ions at the sites A and C are vanished by some way. Then the total

potential energy U∗
O will be reduced by ∆u1

O, with ∆u1
O being the total potential energy of the O2−

ions at the sites A and C for the reciprocal interactions between them and surrounding O2− ions.
In fact, the oxygen ion hops from the site A to the site B leading to the appearance of two oxygen
vacancies at the sites A and C (Fig. 5).

A B C

Fig. 5. The O2− ion at the saddle point B, and forming two oxygen vacancies at the lattice
sites A and C.

If one adds an oxygen ion to the site B, the total interaction potential of the system is
supplemented by ∆u2

O, with ∆u2
O being the reciprocal interaction potential between the O2− ion at

the site B and surrounding O2− ions. Therefore, the expression of ∆uO−O
O is given by

∆uO−O
O =

U∗
O −∆u1

O +∆u2
O

NO
. (A.1)


	I. Introduction
	II. Theory
	II.1. Free energy
	II.2. The vacancy diffusion coefficient

	III. Results and Discussion
	IV. Conclusion
	REFERENCES
	Appendix

