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Abstract. This article reviews the development in our laboratory of magnetic lattices comprising
periodic arrays of magnetic microtraps created by patterned magnetic films to trap periodic arrays
of ultracold atoms. Recent achievements include the realisation of multiple Bose-Einstein conden-
sates in a 10 µm-period one-dimensional magnetic lattice; the fabrication of sub-micron-period
square and triangular magnetic lattice structures suitable for quantum tunnelling experiments; the
trapping of ultracold atoms in a sub-micron-period triangular magnetic lattice; and a proposal
to use long-range interacting Rydberg atoms to achieve spin-spin interactions between sites in a
large-spacing magnetic lattice.
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I. INTRODUCTION

Following the discovery in the mid-1980s of laser techniques to cool and trap clouds of
atoms down to microkelvin temperatures [1–3], optical lattices – periodic arrays of optical dipole
traps created by interfering laser beams – have become a standard tool for trapping arrays of ultra-
cold atoms and degenerate quantum gases [4–6]. Applications of optical lattices include quantum
simulations of condensed matter phenomena [5–7], super-precise optical lattice clocks [8], and
quantum gates for quantum information processing [9, 10]. Such lattices allow precise control
over lattice parameters, such as the lattice geometry, the lattice spacing, and the inter-particle in-
teraction, and provide an ideal platform to realise a variety of exotic condensed matter phenomena
(e.g., [5, 6]). Examples include the realisation of the superfluid to Mott insulator transition in the
Bose-Hubbard model [11], antiferromagnetic correlations between fermionic atoms in the Hub-
bard model [12], antiferromagnetic spin chains of atoms in the Ising model [13], low-dimensional
bosonic [14] and fermionic [15] systems, topological insulators involving edge states [16], and
Josephson junction arrays [17].

An alternative approach for creating periodic lattices of ultracold atoms, which we have
been investigating in Melbourne, involves the use of periodic arrays of magnetic microtraps cre-
ated by patterned magnetic films on an atom chip [18–41]. Such magnetic lattices offer a high
degree of design flexibility and may, in principle, be tailored with nearly arbitrary configurations
and lattice spacing [27], and they may be readily scaled up to millions of lattice sites. In addi-
tion, magnetic lattices do not require (high-power) laser beams and precise beam alignment, they
operate with relatively little technical noise and heating, and they provide state-selective atom
trapping, allowing radiofrequency (RF) evaporative cooling to be performed in the lattice and RF
spectroscopy to characterise the trapped atoms in situ [42, 43]. Finally, magnetic lattices have the
potential to enable miniaturized integrated quantum technologies such as ‘atomtronics’ [44].

We have recently shown that magnetic lattices can be used to realise multiple Bose-Einstein
condensates in a 10 µm-period magnetic lattice [33, 35] near the transition to the quasi-one-
dimensional regime, thus opening the possibility to study ultracold quantum matter in different
geometries. For many applications, however, it would also be desirable to have interactions be-
tween the atoms on neighbouring sites, for example, via quantum tunnelling. For magnetic lattices,
achieving significant tunnelling between neighbouring sites presents a challenge, since the lattice
spacing needs to be in the sub-micron range which also requires the fabrication of sub-micron
magnetic structures and trapping of the atoms at sub-micron distances from the chip surface. We
have recently shown that suitable sub-micron-period square and triangular magnetic lattice struc-
tures for quantum tunnelling experiments can be fabricated by patterning Co/Pd multi-layered
magnetic films [36]. We also demonstrated the trapping of ultracold atoms in a 0.7 µm-period
triangular magnetic lattice at distances down to about 100 nm from the chip surface [38]. At these
distances, however, losses due to surface effects can be problematic. Possible surface effects at
sub-micron distances include the Casimir-Polder interaction [45], Stark shifts due to electric fields
created by atoms adsorbed onto the chip surface during each cooling and trapping sequence [46],
and transitions between Zeeman sublevels (spin flips) due to magnetic Johnson noise [45, 47, 48].
An alternative approach is to increase the atom-atom interactions between distant lattice sites, for
example, by exciting the atoms on neighbouring sites to long-range interacting Rydberg states.
The advantage of Rydberg states is that their van der Waals inter-particle interaction energy scales
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as n11 with the principal quantum number n, enabling strong interactions that can extend over
several micrometers [49]. For this reason we recently put forward a proposal to use long-range in-
teracting Rydberg atoms to realise spin-spin interactions between sites in a large-period magnetic
lattice for simulating frustrated quantum spin models [50]. However, increasing the range of the
atom-atom interaction also increases the range of the atom-surface interaction, and this can also
present new challenges [51, 52].

In the following, we summarise our basic approach to trapping atoms using magnetic lat-
tices, the design and fabrication of sub-micron-period magnetic lattices, investigations of atom
trapping in sub-micron-period magnetic lattices and studies of the trapping lifetime due to surface
effects, and finally we review our proposal for simulating quantum spin models using Rydberg
states prepared in magnetic lattices.

II. TRAPPING ULTRACOLD ATOMS IN A 10 µm-PERIOD ONE-DIMENSIONAL
MAGNETIC LATTICE

A one-dimensional periodic array of magnets provides the simplest example of the magnetic
lattice concept and is a starting point for more complex (two-dimensional) lattice geometries.

For an infinite one-dimensional periodic array of long magnets (in the x-y plane) with per-
pendicular magnetisation Mz, period a and bias fields Bx, By, the magnetic field components at
distances z� a/2π from the bottom of the magnetic surface are given approximately by [18]

[Bx;By;Bz]≈
[
Bx;B0 sin(ky)e−kz +By;B0 cos(ky)e−kz

]
(1)

where k = 2π/a, B0 = 4Mz
(
ekt−1

)
is a characteristic surface magnetic field (in Gaussian units),

and t is the thickness of the magnets. The magnetic field minimum Bmin (or trap bottom), trapping
height zmin, barrier heights ∆By,z, and trap frequencies ωy,z for atoms of mass m in a harmonic
trapping potential are given by [18]

Bmin =|Bx| (2)
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a
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)
(3)
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mFgF µB

m|Bx|

)1/2

|By|, (5)

where mF is the magnetic quantum number, gF is the Landé g-factor and µB is the Bohr magneton.
Thus Bmin, zmin, ∆By,z and ωy,z may be controlled by adjusting the bias fields Bx and By.

Our first experiments were performed on a 10 µm-period one-dimensional magnetic lattice
created by a perpendicularly magnetised TbGdFeCo film deposited on a grooved silicon substrate
on an atom chip plus bias fields (Fig. 1) [21, 53]. Rubidium-87 atoms were initially trapped in a
mirror magneto-optical trap (MOT) and then confined in a compressed MOT using the quadrupole
field from a current-carrying U-wire on the atom chip plus bias field. The atoms were then pumped
into the |F = 2,mF =+2〉 low-field-seeking state and transferred to a Z-wire magnetic trap (with
non-zero Bmin) and evaporatively cooled down to ∼ 15 µK. The Z-wire trap was then brought
close (∼ 5 µm) to the surface of the atom chip by ramping down the Z-wire current (Iz) and
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ramping up the bias field By to create a 1D lattice of magnetic microtraps. When the Z-wire trap
merged with the magnetic lattice traps, Iz was reduced to zero with Bmin = 15 G. In this way∼ 106

atoms were loaded into ∼ 100 elongated magnetic lattice traps with barrier heights of ∼ 1 mK
and trap frequencies of ωrad/2π = 20− 90 kHz, ωax/2π ≈ 1 Hz [21]. In situ RF spectroscopy
measurements indicated atom temperatures of > 150 µK, which were limited by the weak axial
confinement.

Fig. 1. (a) Magnetic lattice of a 1D array of magnetic microtraps created by a periodic array of
perpendicularly magnetised magnets with period a and bias fields Bx, By. The contour lines are
equipotentials calculated for typical parameters. (b) Conducting film beneath the magnetic lattice
structure comprising U-shaped and Z-shaped current-carrying conductors for trapping and loading
the atoms. (c) Photograph of the assembled magnetic lattice chip coated with a reflecting gold film.
Figures adapted from [21, 53].

Fig. 2. Radiofrequency spectra of 87Rb |F =
1,mF = −1〉 atoms in one of the ∼ 100 atom
clouds trapped in a 10 µm-period 1D mag-
netic lattice, demonstrating the onset of Bose-
Einstein condensation with increased evapora-
tive cooling. The solid lines are fits to the data
based on a self-consistent mean-field model
for a BEC plus thermal cloud [35]. The tem-
peratures and atom numbers obtained from
this analysis are (a) 2.0 µK, 5350 atoms (b)
1.3 µK, 3430 atoms and (c) 0.38 µK, 200
atoms. Adapted from [35].

In the next generation of experiments [33, 35], stronger axial confinement was employed,
with lattice trap frequencies of ωrad/2π = 1.5-20 kHz, ωax/2π = 260 Hz. This allowed the atoms
to be evaporatively cooled to much lower trap depths δ f = f f − f0 (where f f and f0 are the final
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evaporation frequency and trap bottom) since atoms satisfying the resonance condition hf = µB
are outcoupled from the traps, and hence to be cooled to lower temperatures [33]. In addition, the
Rb atoms were prepared in the |F = 1,mF = −1〉 state which has a smaller three-body recombi-
nation rate than the |F = 2,mF = 2〉 state [54, 55]. Site-resolved RF spectra taken for about 100
lattice sites in the central region of the lattice revealed the evolution from an initial broad thermal
cloud distribution (Fig. 2(a)) to a bimodal distribution (Fig. 2(b)) to an almost pure Bose-Einstein
condensate distribution (Fig. 2(c)) as the atom clouds were cooled through the critical temperature
(1.6 µK for an ideal gas with N = 3000 atoms/site).

Radiofrequency spectra taken simultaneously for ∼ 100 atom clouds across the central re-
gion of the magnetic lattice showed similar bimodal distributions to Fig. 2 with site-to-site varia-
tions in the trap bottom f0, the atom temperature T , the condensate fraction NC/N and the chemical
potential µ that were within the measurement uncertainties (Fig. 3). In particular, the trap bottom,
which could be precisely determined from the frequency at which there were no atoms remaining
(Fig. 2(c)), showed variations of only ±0.3 kHz in 5 MHz (Fig. 3(b)), reflecting the high degree
of uniformity in the central region of the magnetic lattice.

Fig. 3. (a) Atom temperature T, (b) trap bottom f0, (c) condensate fraction NC/N and (d) chemical
potential µ/h̄ (blue circles) and atom number Nµ (red triangles), determined from fits to the RF spectra
for 54 sites across the central region of the magnetic lattice. The red dashed line in (a) represents the
ideal-gas critical temperature for 220 atoms. Adapted from [35].

At the smallest trap depth (50 kHz), a temperature of 0.25 µK is achieved in the magnetic
lattice (Fig. 4(a)) with a condensate fraction of 81% (Fig. 4(b)), while at the lowest radial trap
frequency (1.5 kHz) a temperature of 0.16 µK is achieved (Fig. 4(c)). For ωrad/2π > 10 kHz, both
the chemical potential µ and the thermal energy kBT become smaller than the energy of the lowest
radial vibrational excited state h̄ωrad (Fig. 4(d)), which represents the quasi-one-dimensional Bose
gas regime [14, 56, 57].
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Fig. 4. Variation of (a) atom temperature T and (b) condensate fraction NC/N with trap depth δ f =
f f − f0 at trap frequencies ωrad/2π = 7.5 kHz, ωax/2π = 260 Hz; and variation of (c) atom temperature
and (d) the ratios µ/h̄ωrad (black points) and kBT/h̄ωrad (red points) with radial trap frequency ωrad/2π

at δ f = 100 kHz. The horizontal dashed line in (d) represents the energy of the lowest radial vibrational
excited state (kBT = µ = h̄ωrad). Adapted from [35].

III. DESIGN AND FABRICATION OF SUB-MICRON-PERIOD SQUARE AND
TRIANGULAR MAGNETIC LATTICES

Until recently, magnetic lattices, both one-dimensional [21,28,33,35] and two-dimensional
[22, 24, 34], have been limited to lattice spacings ≥ 10 µm.

The tunnelling rate J between lattice sites for a barrier height V0� the tunnelling rate J can
be expressed in terms of the lattice recoil energy ER = h2/8ma2 by [6]

J
ER
≈ 4√

π

(
V0

ER

)3/4

exp

[
−2
(

V0

ER

)1/2
]
. (6)

For a lattice spacing a = 10 µm, the tunnelling rate for Rb atoms between lattice sites is
negligibly small, e.g., J/h≈ 0.01 Hz, or tunnelling time 16 s, for V0 ≈ 20ER (6 nK). Thus, an array
of BECs trapped in a 10 µm-period lattice represents an array of isolated clouds with negligible
interaction and no phase coherence between them. For a lattice spacing a = 0.7 µm, the tunnelling
rate for a barrier height V0 ≈ 12ER becomes J/h ≈ 17 Hz (or tunnelling time 10 ms), which is
suitable, for example, for realising the superfluid to Mott insulator quantum phase transition [11].
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Magnetic film patterns designed to create square and triangular magnetic lattices at a trap-
ping height zmin = a/2, using a linear programing algorithm developed by Schmied et al. [27],
are shown in Figs. 5(a) and (b), along with the corresponding 2D contour plots in Figs. 5(c) and
(d). The magnetic film patterns are equivalent to those produced by a virtual current circulating
around the perimeter of the patterned structures, which correspond to square and triangular arrays
of current-carrying Z-wire traps which have non-zero magnetic field minima.

Fig. 5. Magnetic film patterns designed to create (a) square and (b) triangular magnetic lattices at
a trapping height zmin = a/2. Blue regions represent the magnetic film; dark blue dots indicate
positions of magnetic field minima; and black arrows indicate direction of the magnetic field at the
minima. (c), (d) Corresponding 2D contour plots of the optimised magnetic lattice potentials for the
square (c) and triangular (d) lattices with the required bias fields. Blue regions represent potential
minima. Adapted from [27].

The magnetic films used in the fabrication of 0.7 µm-period square and triangular mag-
netic lattice structures consist of a stack of eight bilayers of alternating Pd (0.9 nm) and Co (0.28
nm) [36, 58], with an effective magnetic film thickness tm = 10.3 nm [38]. These multilayer
films have a large perpendicular magnetic anisotropy and a high degree of magnetic homogeneity.
In addition, they exhibit square-shaped hysteresis loops [36] with large remanent perpendicular
magnetisation (4πMz = 5.9 kG) and coercivity (Hc ≈ 1.0 kOe) [36], a high Curie temperature
(300-400˚C) and very small grain size (∼ 6 nm [59] compared with∼ 40 nm for TbGdFeCo [60]),
allowing smooth and well-defined magnetic potentials at sub-micron lattice spacings [61]. They
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are also known to exhibit an enhanced magnetisation relative to bulk cobalt due to polarisation
of the Pd atoms by the nearby Co layers (e.g., [62]). The Co/Pd multilayers were deposited by
dc-magnetron sputtering onto a seed layer of Ta on a Si(100) substrate [36].

The magnetic microstructures were fabricated by patterning the Co/Pd multi-atomic layer
magnetic film using electron-beam lithography followed by reactive ion etching. The patterned
magnetic film is coated with a reflective 50 nm-layer of gold plus a 25 nm protective layer of
silica. Figure 6(a) shows scanning electron microscope images of part of the 0.7 µm-period,
1 mm2 triangular magnetic microstructure, which illustrates the quality of the microstructures.
The patterned Co/Pd magnetic film was then glued to a direct bonded copper (DBC) [63] atom
chip comprising a U-wire structure (for a quadrupole magnetic field) and a Z-wire structure (for
a magnetic trap with non-zero minimum) [38]. The atom chip can accommodate four separate
magnetic lattice structures (each with a patterned area of 1 mm2), each of which has a U-wire
and Z-wire structure directly beneath it (Fig. 6(b)). Finally, the 0.7 µm-period magnetic lattice
structures are magnetised and then characterised by magnetic force and atomic force microscopy,
prior to mounting in the UHV chamber.

(a) (b)

Fig. 6. (a) SEM image of part of the fabricated 0.7 µm-period triangular Co/Pd magnetic lattice
structure. Light regions represent the (unetched) magnetic film. (b) Schematic of the direct bonded
copper (DBC) atom chip, which includes four separated current-carrying U-wire and Z-wire struc-
tures for trapping and loading atoms into the magnetic lattice traps plus two wires on either side for
RF evaporative cooling or RF spectroscopy. The four small green squares in the centre show the
positions of the four 1 mm2 magnetic lattice structures, which are located below their respective U
and Z-wires. Adapted from [38].

For a triangular magnetic lattice with parameters a = 0.7 µm, 4πMz = 5.9 kG and tm =
10.3 nm, the required bias magnetic fields for a lattice optimised for zmin = a/2 are Bx = 0.5 G,
By = 4.5 G. The magnetic film pattern and corresponding 2D contour plot for the triangular mag-
netic lattice with these parameters is shown in Figs. 7(a) and (b). In the magnetic lattice trapping
experiment described in Sect. IV, the triangular magnetic lattice is loaded with atoms from a Z-
wire magnetic trap operating with bias fields Bx = 52 G and By = 0. Figure 7(c) shows the 2D
contour plot for the 0.7 µm-period triangular lattice structure with bias fields Bx = 52 G, By = 0
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Fig. 7. (Color online) (a) Magnetic film pattern and (b) corresponding 2D contour plot designed to
create a triangular magnetic lattice optimised for zmin = a/2, with a = 0.7 µm, 4πMz = 5.9 kG, tm =
10.3 nm, Bx = 0.5 G and By = 4.5 G. Blue regions in (a) represent the magnetic film, dark regions in
(b) are trap minima, and arrows in (a) represent virtual currents circulating around the edges of the film
structure. (c) 2D contour plot of a triangular magnetic lattice potential with bias fields Bx = 52 G, By=0,
with a = 0.7 µm, zmin = 139 nm. (d)-(f) Calculated trapping potentials for 87Rb |F = 1, mF = −1〉
atoms in a 0.7 µm-period magnetic lattice with bias fields Bx = (d) 7 G (e) 26 G, and (f) 52 G and
the above parameters and surface film thickness ts = tAu + tSiO2 = 75 nm. Black dashed lines are the
magnetic lattice potentials and red solid lines include the Casimir-Polder interaction with C4 = 8.2×
10−56 Jm4 for a silica surface. Vertical orange lines indicate the position of the silica surface (z=75 nm)
used in the calculations. ∆Ez and ∆ECP in (e) are the barrier heights for the magnetic lattice potential
only and for the magnetic lattice plus Casimir-Polder potential. Adapted from [38].
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and the above parameters. The traps for this magnetic lattice are more elongated and tighter than
for the triangular lattice optimised for zmin = a/2 with Bx = 0.5 G, By = 4.5 G and each trap is
surrounded by four rather than six potential maxima.

For a perpendicularly magnetised film structure, the magnetisation can be modelled as a
virtual current circulating around the edges of the patterned structure, as indicated by the red and
black arrows in Fig. 7(a). When a By bias field is applied it can cancel the magnetic field produced
by the virtual current flowing along the horizontal black edge of the patterned structure to create a
periodic array of magnetic traps aligned along the short horizontal black edges [Fig. 7(b)]. On the
other hand, when a Bx bias field is applied it can cancel the magnetic field produced by the virtual
current flowing along the vertical red edge to create a periodic array of elongated magnetic traps
aligned along the long vertical red edges [Fig. 7(c)]. In general, the Bx bias field for the structure
in Fig. 7(c) produces lattice traps which are closer to the magnetic film, and which are tighter and
deeper.

IV. TRAPPING ULTRACOLD ATOMS IN A 0.7 µm-PERIOD TRIANGULAR
MAGNETIC LATTICE

For a 0.7 µm-period magnetic lattice, the atoms are trapped at distances down to about
100 nm from the chip surface and at trapping frequencies up to about 1 MHz, which is new territory
for trapping ultracold atoms. At such short distances, possible effects of surface interactions need
to be considered.

The trapping potential at distance z from the magnetic surface with magnetic potential
VM(z) may be expressed as

V (z) =VM(z)+VCP(d)+Vα(d), (7)

where VCP(d) = −C4/[d3(d + 3λopt/2π2)] is the combined attractive Casimir-Polder (C-P) and
van der Waals potential [64], C4 is the C-P coefficient, d = zmin–ts is the distance of the trap centre
to the atom chip surface allowing for a surface film thickness ts, and λopt is the wavelength of
the strongest electric dipole transition of the atom. Vα(d) =−(α0/2)E0(d)2 is the Stark potential
arising from the interaction of the lattice trapped atoms (with polarizability α0) with electric fields
E0(d) created by Rb atoms adsorbed onto the chip surface during each cooling and trapping se-
quence [46]. The attractive C-P potential can distort the repulsive magnetic potential to create a
potential barrier at distances very close to the surface (Fig. 7 (d)-(f)). For bias fields Bx < 26 G and
the parameters in Fig. 7, the calculated trap centre is located at d > 150 nm from the chip surface
and the effect of the C-P interaction is small. For Bx > 40 G, the calculated trap centre is located
at d < 110 nm and the magnetic potential is modified by the attractive C-P interaction, while for
Bx = 52 G the trapping potential becomes very shallow (trap depth ∼ 1.5 µK). Increasing the
distance to the chip surface by, for example, 25 nm increases the trap depth to 660 µK.

For the attractive Stark potential Vα(d) our estimates indicate that for ground-state Rb atoms
[α0(5s) = 7.9×10−2 Hz/(V/cm)2] interacting with typical electric fields (∼ 900 V/cm [51]) pro-
duced by Rb atoms adsorbed on a silica surface at trap distances d ∼ 100 nm, the potential Vα(d)
is negligibly small. However, this potential can be large for highly excited Rydberg atoms, which
have a huge polarizability [e.g., α0(30d3/2) = 2.5×106 Hz/(V/cm)2].

Loading of the magnetic lattice commences with ∼ 106 87Rb |F = 1, mF = −1〉 atoms
cooled to ∼ 1 µK in the Z-wire trap at d ≈ 670 µm from the chip surface with Bx = 52 G and
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Fig. 8. Calibration of distance d of the Z-wire trap centre to the gold reflecting layer on
the magnetic lattice chip surface for Bx = 52 G versus Z-wire current Iz. Inset: reflective
absorption image of the atom cloud close (31 µm) to the chip surface, showing the real
and mirror images. Adapted from [38].

Iz = 38 A. At this bias field, the loading procedure involves simply ramping down Iz until the
Z-wire trap potential merges with the magnetic lattice traps. Figure 8 shows a calibration of the
distance d of the Z-wire trap centre to the gold reflecting layer on the chip surface versus Z-wire
current Iz as the Z-wire trapped atoms approach the chip surface. For loading with Bx < 52 G,
Bx needs to be reduced first before loading atoms into the magnetic lattice traps and Iz is reduced
simultaneously to compensate for the resulting change in zmin. Next, Iz is further reduced while
keeping Bx fixed, to allow the Z-wire trap to merge with the magnetic lattice potential at d ≈ 100
nm from the chip surface. The ramping speed for Iz is carefully optimised to prevent the Z-wire
trapped atoms from penetrating the magnetic lattice potential or being lost by surface interactions
or sloshing. Once the magnetic lattice is loaded, Iz is increased to move the Z-wire cloud further
from the surface for imaging.

In Fig. 9(a), an atom cloud is observed mid-way between two larger clouds which remains
when the Z-wire trap atoms are removed either by projecting them vertically to hit the chip surface
(Fig. 9(b)) or by switching off the Z-wire current. We attribute this smaller cloud to atoms trapped
in the magnetic lattice, while the two larger clouds at the top and bottom are mirror and real
images of atoms remaining in the Z-wire trap. The atoms trapped in individual lattice sites, which
are separated by only 0.7 µm, are not resolved. Absorption measurements indicate ∼ 2× 104 Rb
atoms are trapped in an area of ∼ 50×50 µm2 containing about 5000 lattice sites, corresponding
to Nsite ≈ 4 atoms per site. The lifetimes of the lattice trapped atoms measured by recording the
number of atoms versus hold time at different bias fields Bx range from 0.4 ms to 1.7 ms and
increase slowly with distance d from the chip surface (Fig. 10(a)).
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Fig. 9. Reflection absorption images of 87Rb |F = 1, mF =−1〉 atoms (a) trapped in the
0.7 µm-period triangular magnetic lattice mid-way between the real and mirror images
of the Z-wire trapped cloud, for Bx = 52 G; (b) trapped in the 0.7 µm-period triangular
magnetic lattice only, for Bx = 13 G Adapted from [65].

To interpret the short trapped atom lifetimes and their dependence on distance from the sur-
face, we consider several possible loss processes. When the atoms are transferred from the Z-wire
trap ( ω/2π ≈ 100 Hz) to the very tight magnetic lattice traps (ω/2π ≈ 300−800 kHz) the result-
ing compression is estimated to heat the cloud from ∼ 1 µK in the Z-wire trap to 3-8 mK in the
magnetic lattice traps. During this compression, atoms with energies higher than the effective trap
depth in the z-direction rapidly escape the lattice traps, resulting in a sudden truncation of the high
energy tail of the Boltzmann energy distribution. The remaining more energetic atoms in the outer
region of the magnetic lattice traps with energies comparable to the trap depth can overcome the
trap barrier and are rapidly lost or spill over into neighbouring lattice sites. The remaining trapped
atoms reach a quasi-equilibrium at a lower temperature determined by the truncation parameter
η ≈ ∆Eeff/kBT , where ∆Eeff = min{∆Ez,∆ECP} (Fig. 8(e)). The evaporation loss rate is rapid at
the beginning of the evaporation and then decreases as evaporation progresses.

Using a 1D evaporation model [45], the lifetime for 1D thermal evaporation can be ex-
pressed as

τev = τel/
[

f (η)e−η
]
, (8)

where τel = [n0σelvrel]
−1, n0 = Nsite/[m/(2πkBT )]3/2 ω

3 and f (η) ≈ 2−5/2[1−η−1 + 1.5η−2].
According to this model, τev scales as ∆Eeff/

[
ω

3Nsiteη f (η)e−η
]
. For decreasing bias fields Bx <

40 G (where ∆Eeff ≡ ∆Ez), the trap minima move away from the chip surface and ω
−3 increases

faster than Eeff decreases, so that τev exhibits a slow almost linear increase with increasing distance
z (Fig. 10(b)). For increasing Bx ≥ 40 G (where ∆Eeff ≡ ∆ECP), the trap minima move very close
to the chip surface and ∆Eeff and ω

−3 both decrease together, resulting in a sharp decrease in τev.
A second possible loss process is three-body recombination in the tight magnetic lattice

traps, for which the lifetime is given by τ3b = 1/(K3n2
0), where K3 = 4.3(1.8)×10−29 cm6s−1 for

non-condensed 87Rb |F = 1, mF = −1〉 atoms [50, 51], so that τ3b scales as ∆E3
eff/
[
ω

6N2
siteη3

]
.
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Fig. 10. (Color online) (a) Measured lifetimes (black points) of atoms trapped in the
0.7 µm-period triangular magnetic lattice versus distance z of the lattice trap centre from
the magnetic film surface. The red curve shows calculated evaporation lifetimes τev for
η = 4, Nsite = 1.5, offset δ z = 25 nm and the fixed parameters given in Fig. 7 caption.
(b) Calculated total lifetimes for evaporation τev [red (second) curve], three-body recom-
bination τ3b [blue (top) curve] and spin flips τs (dashed orange curve). The chip surface
is located at z = 50 nm. The curves for τ3b and τs are reduced by factors of 3 and 100,
respectively. Adapted from [38].

For decreasing Bx < 40 G (where ∆Eeff ≡ ∆Ez), ∆E3
eff decreases at about the same rate as ω

−6

increases, resulting in τ3b remaining almost constant for distances z > 200 nm (Fig. 10(b)). For
increasing Bx ≥ 40 G (where ∆Eeff ≡ ∆ECP), the trap minima move very close to the chip surface
and ∆E3

eff and ω
−6 both decrease strongly with decreasing z, resulting in a rapid decrease in τ3b

(Fig. 10(b)). A further possible loss process can result from spin flips due to magnetic Johnson
noise generated by the gold conducting layer near the surface of the magnetic film [45, 47, 48].
For a gold conducting layer of thickness tAu, τs ≈ 0.13

(
d′+ d′2

tAu

)
ms [38], where d′ = zmin− tAu

and tAu are in nanometres. The calculated spin-flip lifetimes, which range from τs = 46 ms for
d′ = 110 nm to 240 ms for d′ = 310 nm, are much longer than the measured lifetimes.

The calculated evaporation lifetime τev versus distance (red curve, Fig. 10(b)) has a positive
slope given by ∆Eeff/

(
ω

3d
)

that closely matches the slope of the measured lifetime versus dis-
tance, whereas the calculated three-body loss lifetime τ3b versus distance remains almost constant
for distances z > 200 nm. The red curve in Fig. 10(a) shows the calculated evaporation lifetime
τev with fitted scaling parameters η = 4 and Nsite = 1.5, a fitted offset δd = 25 nm (see below)
and the fixed parameters given in the Fig. 7 caption. The smaller value Nsite = 1.5 compared with
the Nsite ≈ 4 estimated from the total number of atoms trapped in ∼ 5000 lattice sites could be
a result of atoms spilling over into neighbouring lattice sites during the initial transfer of atoms
into the tight magnetic lattice traps. A value of Nsite ≈ 1.5 is characteristic of an end product of
three-body recombination during the earlier equilibrating stage when the atom densities are very
high. To obtain a reasonable fit at distances d < 100 nm from the chip surface, where the life-
time is very sensitive to the d−4 dependence of the C-P interaction, requires either the calculated
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C4 = 8.2× 10−56 Jm4 to be an order of magnitude smaller, which is unrealistic, or the calcu-
lated distances to be slightly larger, by δd ≈ 25 nm, which is within the estimated uncertainty in
d = zmin− (tAu + tSiO2) [38].

The above results suggest that the atom lifetimes in the 0.7 µm-period magnetic lattice are
currently limited mainly by losses due to evaporation following transfer of the atoms from the
Z-wire trap into the very tight magnetic lattice traps, rather than by losses due to fundamental
processes such as surface interactions, three-body recombination or spin flips caused by magnetic
Johnson noise.

The measured lifetimes of the atoms trapped in the 0.7 µm-period magnetic lattice, 0.4 –
1.7 ms, need to be increased significantly to allow RF evaporative cooling in the magnetic lattice
and to allow quantum tunnelling, where the relevant tunnelling times for a 0.7 µm-period lattice
are typically∼ 10 ms at a barrier height V0≈ 12ER. The biggest increase in trap lifetime is likely to
come from improving the transfer of atoms from the Z-wire trap to the very tight magnetic lattice
traps. Heating due to adiabatic compression during transfer of the atoms could be reduced by
loading from a magnetic trap with large radial trap frequency, such as the type reported by Lin et
al. (ωrad/2π ≈ 5 kHz) [45] or from a 1D optical lattice of pancake traps (ωrad/2π ≈ 100 kHz) [66].

V. LONG-RANGE INTERACTING RYDBERG ATOMS IN A LARGE-SPACING
MAGNETIC LATTICE

Highly excited Rydberg atoms can be orders of magnitude larger than ground-state atoms,
making them extremely sensitive to one another and to external fields [49]. At large atom separa-
tions, Rydberg-Rydberg interactions involve long-range van der Waals (vdW) interactions which
scale as n11 with the principal quantum number n [49]. Thus atoms on neighbouring sites of a
large-spacing magnetic lattice can interact by exciting the atoms to Rydberg states [29,34,50,51].

We consider a magnetic lattice in which each lattice site i contains an ensemble of Ni
rubidium-87 atoms of spatial extension l and the different sites are separated by the lattice period
a (Fig. 11(a)). Each lattice site is prepared with precisely one Rydberg excitation, for example, by
tuning to the two-photon laser excitation |g〉→ |R↓〉≡ |n↓S1/2,m j =+1/2〉 (Fig. 11(b)). To restrict
the system to a single excitation on each lattice site we make use of Rydberg blockade in which
the presence of the Rydberg atom shifts the energy levels of nearby atoms, thereby suppressing
subsequent excitation of other atoms in the ensemble (Fig. 11(a)) [49]. The characteristic range of
the Rydberg-Rydberg interaction is given by the Rydberg blockade radius, rb ≈ |C6/Ω|1/6, which
for a typical atom-light coupling constant Ω/2π ≈ 1 MHz is 2 - 10 µm, depending on the Rydberg
state [50]. In order to prepare a single Rydberg atom in each lattice site separated by a distance
a we require a separation of length scales l � rb . a, which can be met for a large-spacing
magnetic lattice. The use of atomic ensembles avoids the problem of exact single-atom filling of
magnetic lattice sites and single-atom detection, and also helps with the initialisation and readout
of individual Rydberg spin states.

To initialise the spin lattice we use collectively enhanced atom-light coupling in each mi-
crotrap to drive two-photon Rabi oscillations between the ground state and the Rydberg state.
Complete population inversion can be achieved by exciting with a Rabi π -pulse. Numerical sim-
ulations [50] indicate that, for a typical magnetic lattice microtrap with radii σx = σy = 0.15 µm,
σz = 0.4 µm, the optimal principal quantum number for maximising the efficiency of initial state
preparation for N = 5-15 atoms per site is around n ≈ 33, with an estimated overall efficiency of
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Fig. 11. Scheme for creating long-range spin-spin interactions between single Rydberg
atoms trapped in neighbouring sites of a large-spacing magnetic lattice. (a) Two spin
states | ↓〉 and | ↑〉 are encoded in a single two-photon excitation to the Rydberg state
|n↓S〉 or |n↑S〉 (red spheres), which is shared amongst all atoms in the ensemble (blue
spheres). To prepare a single Rydberg atom in an ensemble of spatial extent l on each
site of a lattice with period a requires l� rb . a, where rb ≈ |C6/Ω|1/6 is the Rydberg
blockade radius. (b) Level structure of a single atom involving two-photon excitation to
the Rydberg |n↓S〉 state. The states involved in the detection processes are marked with
dotted lines. Adapted from [50].

around 92% , which is limited mainly by atom number fluctuations due to the stochastic loading
process.

Following initialisation, the excitation laser is switched off and Rydberg excitations on
neighbouring lattice sites interact as a result of their giant electric dipole moments (typically sev-
eral kilodebye). We identify two collective spin states [50]

| ↑〉= 1√
N ∑

j
|g1, . . . ,g j−1,R↑,g j+1, . . . ,gN〉,

| ↓〉= 1√
N ∑

j
|g1, . . . ,g j−1,R↓,g j+1, . . . ,gN〉,

(9)

where |R↑〉 and |R↓〉 denote the |n↑S1/2,m j = +1/2〉 and |n↓S1/2,m j = +1/2〉 Rydberg states.
These collective spin states are coherent superpositions with the single Rydberg excitation shared
amongst all atoms in the ensemble [49]. This configuration allows complex spin-spin interactions
including XXZ spin-spin interactions in 2D. In addition, the two collective spin states may be
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coupled using two-photon microwave transitions between the two Rydberg states (Fig. 11(b)) to
realise single-spin rotations which simulate transverse and longitudinal magnetic fields.

For the quantum simulation of spin models, the spin-spin coupling rate between neigh-
bouring lattice sites |C6|/a6 needs to greatly exceed the decoherence rate Γ of the Rydberg state.
In addition, in order to prevent interference between neighbouring sites during the initialisation
phase, the Rydberg excitation bandwidth

√
NΩ needs to exceed the spin-spin coupling rate be-

tween neighbouring sites. Finally, to ensure good conditions for Rydberg blockade, the spin-spin
coupling rate between atoms within each ensemble |C6|/l6 needs to greatly exceed the excitation
bandwidth. These constraints lead to [50]:

|C6|
l6 �

√
NΩ� |C6|

a6 � Γ. (10)

For example, for Rydberg 33S1/2 atoms (Γ/2π = 7.3 kHz [67]) trapped in a magnetic lattice with
period a ≈ 2.5 µm, trap size l ≈ 2σ = 0.8 µm, N = 10 atoms per site and typical collectively-
enhanced 2-photon Rabi frequency (

√
NΩ/2π ≈ 3 MHz), each of the criteria in Eq. (10) is satisfied

by at least an order of magnitude.
To read out the collective spin state we need to detect the presence of a single Rydberg atom

in a given spin state in the atomic ensemble with high fidelity. This can be achieved by using a
single-Rydberg atom triggered ionisation ‘avalanche’ scheme [68, 69], in which the presence of
the single Rydberg atom conditionally transfers a large number of ground-state atoms in the trap
to untrapped states which can then be detected by standard site-resolved absorption imaging [50].

We now consider the realisation of lattice spin models where the spin-1/2 degree of freedom
is encoded in the collective spin states of Eq. (9). By using two Rydberg S-states with different
principal quantum numbers, i.e., |R↑〉= |n↑S1/2,m j =+1/2〉 and |R↓〉= |n↓S1/2,m j =+1/2〉 with
n↑ 6= n↓, we can realise a spin-1/2 exchange Hamiltonian, with spin-spin couplings of the form [70]

H = ∑
i, j<i

[
Jz (ri j)Sz

i S
z
j +

1
2

J⊥ (ri j)
(

S+i S−j +S−i S+j
)]

+∑
i

[
zih̃‖S

z
i +h⊥Sx

i −h‖S
z
i

]
.

(11)

Here, Sz
i denotes the z-component of the spin-1/2 operator and Si

± is the spin raising/lowering
operator at lattice site i, Jz and J⊥ are spin-coupling coefficients that originate from the vdW in-
teractions between the chosen spin states, and h‖ and h⊥ are longitudinal and transverse fields.
The inclusion of a tunable microwave field to couple the n↓S1/2↔ n↑S1/2 states via a two-photon
microwave transition results in tunable longitudinal and transverse field terms h⊥ and h‖. For nS
states, the spin-coupling coefficients are effectively isotropic and depend only on the distance be-
tween the two sites I and j, i.e., Jz (ri j) = Jz/|ri− r j|6 and J⊥ (ri j) = J⊥/|ri− r j|6. For the Ising
spin-coupling coefficient we obtain Jz =C6(n↑,n↑)+C6(n↓,n↓)−2C6(n↑,n↓), where the C6(n1,n2)
coefficients denote the diagonal vdW interaction between the Rydberg states |n1S1/2,1/2〉⊗
|n2S1/2,1/2〉. The J⊥ = 2C̃6(n↑,n↓) term arises as an exchange process between the degenerate

states |n↓S1/2,1/2〉
⊗
|n↑S1/2,1/2〉 and |n↑S1/2,1/2〉

⊗
|n↓S1/2,1/2〉 via vdW interactions and de-

pends strongly on δn = n↑− n↓. The longitudinal field h‖ = [C6(n↑,n↑)–C6(n↓,n↓)]/2 originates
from the small difference between intra-spin interactions where zi = ∑ j r−6

i j is a factor depending
on the lattice geometry.
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The Hamiltonian (11) allows studies of anisotropic XXZ spin-1/2 models in various ge-
ometries with additional longitudinal and transverse fields. These models can allow the study
of exotic quantum phases of matter [71]. A key parameter is the anisotropic ratio ∆ = Jz/ J⊥
which can be tuned over a wide range by choosing the principal quantum numbers n↑ and n↓. The
case of no transverse field h⊥ has been studied extensively in one-dimensional spin chains with
next-neighbour interactions and supports ferromagnetic (∆ < −1) and antiferromagnetic (∆ > 1)
phases as well as a spin liquid phase for −1 < ∆ < 1. For the anisotropic XXZ spin-1/2 model
in two dimensions, no exact solution exists; however it is expected to support non-trivial quantum
phases which depend on the lattice geometry. For example, for a triangular lattice it gives rise
to a stable supersolid phase [72, 73] while for a kagome lattice a spin-singlet valence-bond solid
phase emerges [74–76]. In addition, due to the 1/r6 character of the spin-spin interactions one can
realise frustrated J−J′ models on a square (or rhombus) lattice which are expected to yield stable
stripe-like supersolid phases [70, 77].

Fig. 12. (a) Calculated spin coefficients of the Hamiltonian (11) as a function of principal
quantum number n for the Rb nS1/2 and (n+1)S1/2 states. (b) Resulting anisotropy ratio ∆

= Jz/J⊥ . Förster resonances occur at around n ≈ 24 and n ≈ 38. Adapted from [50].

To illustrate the tunability of the resulting spin interactions we consider the case n↑ =
n↓ + 1 for which the two Rydberg states are close in energy and the exchange process J⊥ is
maximised [50]. Figure 12 shows calculations of (a) the coupling strengths for Rb nS1/2 and
(n+1)S1/2 states, and (b) the resulting anisotropy parameter ∆ = Jz/J⊥, as a function of the prin-
cipal quantum number n. Both Jz and J⊥ exhibit two Förster resonances, at n ≈ 24 and n ≈ 38,
where the channels to {nP3/2,nP1/2} and {nP3/2,nP3/2} states become close in energy, respec-
tively. As a result of these Förster resonances it is possible to realise ferromagnetic Jz interactions
for n∈ {25,28} and n> 38 or antiferromagnetic spin interactions for n< 25 and n∈ {29,38}. The
anisotropy parameter ∆ crosses the transition from ferromagnetic to spin-liquid phases at n = 40
(∆ = −1). The inclusion of a tunable microwave field allows additional control, including time-
dependent control of the transverse and longitudinal fields. In Appendix C of Ref. [48] we also
considered spin encoding using two different Rydberg nP states, which can give rise to even richer
spin Hamiltonians with anisotropic couplings such as generalised compass type models.
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The time-scales associated with the atomic motion (∼ ms) or lifetimes of high nS Rydberg
states (> 20 µs) [67] are long compared with the time-scales associated with strong Rydberg-
Rydberg interactions (∼ 1 µs). This enables investigation of non-equilibrium spin dynamics on
both short and long times, including, for example, the build-up of spin-spin correlations following
a sudden quench of the system parameters.

A potential issue with the use of long-range interacting Rydberg atoms in magnetic lattices
is the effect of stray electric fields created by Rb atoms adsorbed on the chip surface during each
cooling and trapping sequence [51, 52, 78, 79]. Studies of Rb Rydberg atoms trapped at distances
down to 20 µm from a gold-coated chip surface have revealed small distance-dependent energy
shifts of ∼ ±10 MHz for n ≈ 30 [51]. Significantly larger electric fields have since been found
when the chip surface is coated with a dielectric SiO2 layer [52]. Recent studies have demonstrated
that the stray electric fields can be effectively screened out by depositing a uniform film of Rb
over the entire chip surface [78] or by using a smooth monocrystalline quartz surface film with a
monolayer of Rb absorbates [79].

VI. SUMMARY AND OUTLOOK

In this review we have discussed recent advances in our laboratory on the development of
magnetic lattices created by patterned magnetic films to trap periodic arrays of ultracold atoms.

Multiple Bose-Einstein condensates of 87Rb atoms have been produced in a 10 µm-period
1D magnetic lattice, with low atom temperatures (∼ 0.16 µK), high condensate fractions (∼ 81%)
and a high degree of lattice uniformity. For large radial trap frequencies (> 10 kHz), the clouds of
trapped atoms enter the quasi-1D regime. For this 10 µm-period magnetic lattice, the elongated
clouds of ultracold atoms represent arrays of isolated atomic clouds with no interaction between
neighbouring sites. To achieve interaction between sites via quantum tunnelling, magnetic lattices
with sub-micron periods are required.

High-quality triangular and square magnetic lattice structures with a period of 0.7 µm
have been fabricated by patterning a Co/Pd multi-atomic layer magnetic film using electron-
beam lithography and reactive ion etching. Ultracold atoms have been successfully trapped in
the 0.7 µm-period triangular magnetic lattice at distances down to about 100 nm from the chip
surface. The lifetimes of the lattice trapped clouds (0.4 - 1.7 ms) increase with distance from
the chip surface. Model calculations suggest that the trap lifetimes are mainly limited by losses
due to thermal evaporation following transfer of atoms from the Z-wire magnetic trap to the very
tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions,
three-body recombination or spin flips due to magnetic Johnson noise. It should be possible in
future to improve the transfer of atoms from the Z-wire trap to the very tight magnetic lattice
traps, for example, by loading the atoms from a magnetic trap or 1D optical lattice with high trap
frequencies.

We have proposed an alternative approach to create interactions between atoms on neigh-
bouring sites of a magnetic lattice which is based on long-range interacting Rydberg atoms. Each
spin is encoded directly in a collective spin state involving a single nS or (n+1)S Rydberg atom
prepared via Rydberg blockade in an ensemble of ground-state rubidium atoms. The Rydberg
spin states on neighbouring lattice sites are allowed to interact via van der Waals interactions with
the driving fields turned off. They are then read out using a single-Rydberg atom triggered pho-
toionisation avalanche scheme. The use of Rydberg states provides a way to realise complex spin
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models including XXZ 2D spin-1/2 models. This paves the way towards engineering exotic spin
models, such as those based on triangular-based lattices which can give rise to a rich quantum
phase structure including frustrated-spin states. With the use of Rydberg atoms, it should also be
possible to investigate dynamics such as the build-up of spin-spin correlations on different length
and time scales following a dynamical change in the system [80].
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