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Abstract. The Kondo problem of a magnetic impurity embedded in the Lieb lattice is studied by
the numerical renormalization group. The magnetic impurity hybridizes with conduction electrons
from both the flat- and the soft-gap bands. We find a competition between the soft gap and the
molecular Kondo singlet formations. The molecular Kondo effect occurs only when the magnetic
impurity strongly hybridizes with conduction electrons at edge center sites of the Lieb lattice, and
at the temperature range between the artificial strong coupling and the local moment regimes.
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I. INTRODUCTION

Electron correlations in flat-band lattices have attracted a lot of research attention due to
their special features. In flat-band lattices, the Coulomb interaction of electrons becomes dom-
inant over the kinetic energy, and as a consequence intriguing phenomena such as the flat-band
ferromagnetism or the molecular Kondo effect emerge [1,2]. When a magnetic impurity is coupled
to conduction electrons from the flat band, it forms the molecular Kondo singlet with a single con-
duction electron and quenches all other conduction electrons in the Kondo singlet formation [2-5].
This essentially yields a pure two spin qubits in solids, where the band flatness exists. However, in
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flat-lattice lattices, in addition to the band flatness, conduction electrons of other bands often have
special low-energy properties, for instance, in the Lieb lattice, conduction electrons also exhibit
the Dirac cones nearby the corners of the first Brillouin zone [1,2]. When a magnetic impurity is
coupled to such conduction electrons, they together yield a soft-gap Kondo problem [6, 7]. In this
way, the flat-band lattices would allow us to study the competition between the soft-gap and the
molecular Kondo strong coupling when the magnetic impurity is coupled with both the flat-band
and soft-gap band conduction electrons. For this purpose we will study the Kondo problem in the
Lieb lattice. The Lieb lattice is the two-dimensional edge-centered square lattice [1,2]. It is one
of the simplest flat-band lattices, and is often used to study the effects of the band flatness [1]. The
electron structure of the Lieb lattice exhibits both the band flatness and soft gap [1,2]. In contrast
to the previous study, where the magnetic impurity is coupled only to the flat-band conduction
electrons [2], in this present work the magnetic impurity is coupled to both the flat band and
soft-gap conduction electrons. This can be achieved by extending the local hybridization between
the magnetic impurity and conduction electrons to nonlocal ones. The local hybridization of the
magnetic impurity at the square corner site of the Lieb lattice yields the soft gap Kondo problem,
while the nonlocal hybridization between the magnetic impurity at the corner site and conduction
electrons at the nearest neighbor sites essentially yields the molecular Kondo problem [2]. In such
the way we are able to study the competition between the soft gap and molecular Kondo singlet
in the Lieb lattice. We will use the numerical renormalization group (NRG) to solve the proposed
Kondo problem [7-10]. The NRG was essentially introduced to solve the Kondo problem in met-
als [7-10]. It accurately describes all possible regimes in the Kondo problem [7-10]. The NRG
has also been extended to solve the Kondo problem in different environments, such as in soft-
gap systems, superconductors,... [7]. Recently, the NRG was successfully applied to the Kondo
problem in the flat-band systems [2].

The organization of the present paper is as follows. In Sec. II we present the model. The
NRG calculations and their results are presented in Sec. III. Section IV is the conclusion.

II. MODEL

One of the simplest flat-band lattices is the Lieb lattice [1]. The Lieb lattice is a square
lattice with additional sites at the middle of every square edge (see Fig. 1). The Lieb lattice has
attracted research attention since the discovery of high-temperature superconductivity because it
is the basic structure of CuO; plane of the cuprate superconductors [1]. The Lieb lattice can be
also artificially made by optical lattices [11], ultracold atoms [12], and molecular design [13].

We consider a magnetic impurity, which is placed at a corner site (A site in Fig. 1), and
hybridizes with conduction electrons at site A as well as at the nearest neighbor sites. The Hamil-
tonian of the model reads
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where cjo(cl).c is the creation (annihilation) operator of conduction electron at site i with spin

o. t is the hopping parameter. Here we take into account only the nearest neighbor hopping
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Fig. 1. The Lieb lattice structure. The magnetic impurity (red dot) is hybridized with con-
duction electrons at the corner site (A site) as well as at the edge center sites, surrounding
the corner site (B and C sites).

of conduction electrons. fjo (fac) is the creation (annihilation) operator of impurity with spin

o at site A. n£6 = on fac is the number operator of the magnetic impurity. €is the energy
level of the magnetic impurity, and U is the Coulomb interaction of electrons at the impurity
site. The magnetic impurity hybridizes with conduction electrons at site A by strength Vp, and
with conduction electrons at nearest neighbor sites by strength V;. When V; = 0, Hamiltonian in
Eq. (1) reduces to the one of the soft-gap Kondo problem [6,7]. WhenVy = 0, Hamiltonian in
Eq. (1) basically describes the molecular Kondo problem [2]. For finite hybridizations Vj, Vi,
Hamiltonian in Eq. (1) would describe the competition between the soft-gap and the molecular
Kondo effect, which may occur in the system. We parameterize these hybridization strengths by

V() :%(1 + OC)V,
Vi=3(1—a)V.
Whena =1,Vy=Vand V; =0. Whena=—1,Vy=0and V; =V. When -1 < a <1,
both Vy and V; are finite. The parameter o describes the difference relation between Vj and Vi,

while V is the total hybridization strength.
The Kondo problem totally depends on the hybridization function [7-10]

A(@) = ¢ Y Tlo— h(0)] T,
k

where FZ = (Vo,2Vi cos(ky/2),2Vi cos(ky/2)), and hg(k) is the Bloch Hamiltonian of conduction
electrons

0 —2tcos(ky/2) —2tcos(ky/2)
ho(k) = —2tcos(ky/2) 0 0
—2tcos(ky/2) 0 0
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III. NUMERICAL RENORMATION GROUP RESULTS

We use the NRG to solve the Kondo problem in the Lieb lattice, which is described by
Hamiltonian in Eq. (1). The NRG Ljubjana package is used [14-16]. In numerical calculations
the half band width D = 21/27 = 1 is used as the energy unit. We set I = V2, and consider only
the symmetric case € = U /2. In the NRG the logarithm mesh is discretized by the Z scheme with
the energy cutoff A = 2 [14-16]. All calculated quantities are averaged over N, = 8 interleaved
logarithm meshes with the twist parameter z = 1/N, [14-16]. The impurity thermodynamical

quantityO is defined as Ojyp = Oor — 0}8} , where Oy, is the thermodynamical quantity of the

total system, and 0,(22 is the one without the impurity [7]. This is the contributions of the magnetic

impurity to the thermodynamical quantity. Like the previous study, in order to take into account
the flat-band feature we broaden the flat band by a small positive quantity 7, i.e. replace A(@) —
Alw+in) [2].
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Fig. 2. The impurity entropy as a function of temperature for different values of . U =
0.5, =0.001,n =10,

In Fig. 2 we plot the impurity entropy for different parameterso.. When o = 1, the impurity
entropy shows two regimes. At low temperature S;,, = In2. This low temperature regime is
the local moment (LM) one. The magnetic impurity behaves as a local moment, thereforeS;,, =
In2 [7-10]. When temperature increases, the impurity entropy increases toward to the free orbital
(FO) entropy value 21n2. The high temperature regime is the FO one [7-10]. The case o =1 is
the soft gap Kondo problem, as expected, because o = 1 implies Vp = Vand V| = 0. In this case the
magnetic impurity is coupled only to conduction electrons at A site. Since conduction electrons at
A site exhibit the soft-gap feature, hence the Kondo problem is the soft-gap one [6,7]. When «
decreases towards to the opposite limit @ = —1 a novel regime, which occurs at temperature lower
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than the LM regime, appears. In this regime, the impurity entropy is smaller than the LM one. It
decreases towards the value of the impurity entropy in the limit @ = —1. When oo = —1, Vp = Oand
Vi =V imply the magnetic impurity is coupled to conduction electrons at the edge center sites.
The local density of states of conduction electrons at the edge center sites exhibits both the soft-
gap and the flat-band features. This yields the molecular Kondo problem, where the flat-band
conduction electrons play a dominant role in the Kondo singlet formation [2]. The conduction
electrons of the soft-gap bands are irrelevant to the Kondo-singlet formation [2]. However, in
contrast to the previous study [2], the hybridization in the case @ = —1 is momentum dependent.
Due to this feature, the impurity entropy does not approach to the value of the impurity entropy
in the molecular Kondo effect [2]. At sufficient low temperature, typically bellows 77, a strong
coupling regime appears. However, this regime is artificial, due to the finite value of 7n7. In the
limit n — 0, it disappears. In addition, in this regime, the impurity entropy fluctuates around the
entropy value of the LM regime.

Like in the previous study [2], the NRG results depend on the broadening parameter 1,
as shown in Fig. 3. In figure 3 we plot the temperature dependence of the impurity entropy for
different values of 1. We consider the case o = —1, because in this case, the effect of the flat
band is strongest, as it is shown in Fig. 2. One can see in Fig. 3, in the LM and the FO regimes,
the impurity entropy is independent on 1. However, in the molecular Kondo effect regime, the
impurity entropy depends on 7], as expected, because the width of the flat band influences on the
Kondo singlet formation.
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Fig. 3. The impurity entropy as a function of temperature for different values of n. U =
0.5, '=0.001, @ = —1.

Similarly, the impurity spin susceptibility also depends on the broadening parameter 7, as
shown in Fig. 4. In Fig. 4 we plot the temperature dependence of the impurity spin susceptibility
for different values of 1. In the LM and the FO regimes, the impurity spin susceptibility again
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does not depend on 7, providing it is small. However, in the regime of the molecular Kondo effect,
the impurity spin susceptibility strongly depends on 7).
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Fig. 4. The impurity spin susceptibility as a function of temperature for different values
of . U=05,I=0.001, . = —1.
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Fig. 5. The impurity spin susceptibility as a function of temperature for different values
of . U=0.5,T=0.001,n = 107°.

In Fig. 5 we present the temperature dependence of the impurity spin susceptibility for
different values of . In the limit @ = 1, one can see again the soft-gap Kondo problem. There
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are only two regimes: LM and FO. In the LM regime T X;», = 1/4, and in the FO regime it
approaches to 1/8[7-10]. The molecular Kondo effect appears only when o < 0. This condition
implies Vi >V, 1. e., the impurity hybridization with conduction electrons at the edge center
sites (B and C sites) must be stronger than the one with conduction electrons at the corner site
(A site). The molecular Kondo effect is strongest when o = —1, i.e, when the magnetic impurity
is decoupled from the conduction electrons at the corner site. However, due to the momentum
dependence of the magnetic impurity hybzidization with conduction electrons at the edge center
sites, the impurity spin susceptibility does not approach to —1/8, as in the case of momentum
independent of hybridization [2]. At sufficient low temperature, typically 7 < 1, the system goes
to the strong coupling due to the finite value of 1. However, as we have mentioned, this regime is
artificial due to finite value of 7. In the limit 7 — 0, it disappears. The properties of the impurity
susceptibility is consistent with the behaviors of the impurity entropy in Fig. 2.

IV. CONCLUSION

We have studied the Kondo problem in the Lieb lattice when the magnetic impurity hy-
bridizes with conduction electrons of both the flat- and the soft-gap bands. The Kondo effect
strongly depends on the relation of the hybridizations at the corner site and at the surrounding
edge-center sites. When the hybridization at the corner site is stronger, only the LM and FO
regimes exist. The molecular Kondo regime appears only when the hybridizations at the edge-
center sites are stronger, and below the molecular Kondo temperature. It occurs as a result of the
competition between the soft-gap and the molecular Kondo effects in the Lieb lattice.
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