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I. INTRODUCTION

Multiparty remote state preparation [1] or joint remote state preparation (JRSP) [2] or col-
lective remote state preparation [3] are three formally different names of the same quantum proto-
col which we call JRSP in this paper. JRSP’s primary aim is to prepare by means of local operation
and classical communication (LOCC) a quantum state at a distant location by a group of people
(called preparers) who are spatially separated. The salient distinction between JRSP and remote
state preparation (RSP) (see, e.g. [4]) is that in RSP there is only one preparer who knows the full
classical information of the state to be prepared, while in JRSP there are more than one preparer
and each of them just holds a partial classical information of the to-be-prepared state so none of
them can learn the full secrecy encoded in the quantum state, thus ensuring the desired security
of the state preparation process. JRSP has been received much attention with regards to differ-
ent types of quantum states and nonlocal quantum channels [5–23]. The key strategy in JRSP
to achieve perfection (i.e., with both its success probability and fidelity equal to 1) is to suitably
split information of the input state and employ adequate measurement procedures in which the
measurements are done sequentially in an adaptive manner: outcome of a previous measurement
decides the basis of a next one [10,16,19,20]. The experimental perspective of JRSP has also been
addressed as well [24,25]. However, JRSP protocols in particular or quantum protocols in general
are perfect only in ideal conditions. In practice there are many obstacles that prevent quantum
protocols from being perfect. One of such obstacles is noises originated from surrounding envi-
ronment with which quantum states of interest interact. The commonly recognized consequence
of noise is degradation of entanglement degree of the quantum channel and therefore reduces the
quality of the protocol. Depending on type and strength of noises the initially intended entangle-
ment may vanish suddenly or asymptotically [26,27] as time/distance grows. An efficient method
to cope with noises is entanglement distillation that transforms a large number of previously shared
less entangled states into a smaller number of maximally entangled ones using only LOCC [28]
- [30]. Another method to protect entanglement is based on weak measurements [31, 32]. The
drawback of both techniques is that the success probability is less than 1. Several studies related
to improving quantum teleportation protocol under the effect of noise have exploited quantum dis-
tillation [28, 33] and weak measurements [34, 35]. However, when there is only one copy of the
entangled state the above methods do not apply. In this situation one may intentionally distribute
nonmaximally (instead of maximally) entangled states characterized by some parameters which
can be controlled so that the protocol performance is optimal under certain types of noise. Such
an approach to cope with noises in quantum teleportation has recently been developed [36–41].

JRSP in noisy scenarios has also been investigated through solving Lindblad master equa-
tions [42, 43] or using Kraus operators [44–46]. Recently, JRSP of an arbitrary 1-qubit state in
the presence of noises has been studied [47] in which the initial quantum channel and the steps
of performance are suitably designed to optimize the fidelity. Our aim in this paper is to optimize
noisy JRSP of an arbitrary 2-qubit state. The types of noise to be dealt with are those caused
by the bit-flip, phase-flip, depolarizing and amplitude-damping mechanisms [48, 49]. By means
of adjustment in the standard JRSP protocol, the averaged fidelities are optimized and then ana-
lyzed through their phase diagrams. The results show that the protocol with amplitude-damping
or phase-flip noise is more robust than with the other noises. In case of bit-flip noise the second
preparer, who produces the quantum channel, can apply the Pauli operator σx to obtain the desired
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fidelity at a large value of noise strength. Some specific scenarios, in addition, show that lesser
initial quantum entanglement or greater noise strength can boost the quality of JRSP. From these
results, we categorize more precisely two ways for the optimization according to their features. In
Sec. II, we briefly describe JRSP of an arbitrary 2-qubit state in density operator representation.
We then optimize the values of the averaged fidelities obtained in various scenarios of noises and
analyze their phase diagrams in Sec. III. Finally, Sec. IV is devoted to the conclusions.

II. DENSITY OPERATOR REPRESENTATION

Let Alice, Bob and Charlie be 3 remote parties. Alice and Bob are assigned a task of jointly
preparing for Charlie a 2-qubit state of the most general form

|ψ〉= λ0 |00〉+λ1eiϕ1 |01〉+λ2eiϕ2 |10〉+λ3eiϕ3 |11〉 , (1)

where ϕ j ∈ [0,2π] and λ j are real numbers satisfying the condition ∑
3
i=0 λ 2

i = 1. The full classical
information characterizing state |ψ〉 (i.e., the phases ϕ j and the amplitudes λ j) is divided between
Alice and Bob in such a way that Alice holds the values of {λ0,λ1,λ2,λ3} while Bob those of
{ϕ1,ϕ2,ϕ3} . Since the 3 parties are working in 3 spatially separated labs and allowed to do only
LOCC, to fulfill the task they must priorly share a quantum channel described by a density matrix
ρ123456 which is made up at least of six qubits. Let us label 1,2 (3,4 and 5,6) the qubits belonging
to Alice (Bob and Charlie). The general procedure to perform JRSP goes as follows.

First, Alice measures qubits 1 and 2 in the basis {|ωkl〉12 ;k, l ∈ {0,1}},

|ωkl〉12 =
1

∑
m,n=0

Ukl,mn |mn〉12 , (2)

where Ukl,mn are matrix elements of U, a 4×4 unitary matrix, which is determined by the ampli-
tudes {λ j}. After obtaining an outcome kl (i.e., finding a state |ωkl〉12), Alice announces the values
of k and l. As an immediate consequence of this, the state of ρ123456 reduces to an entangled state
now connecting only Bob and Charlie

ρ123456→ ρ
(kl)
3456 =

12 〈ωkl|ρ123456 |ωkl〉12

P(kl)
(3)

with P(kl) = Tr (12 〈ωkl|ρ123456 |ωkl〉12) the probability that Alice obtains the outcome kl.
Next, based on the announced values of k and l, Bob applies on qubits 3 and 4 a unitary

operator T (kl)
34 to transform ρ

(kl)
3456 into an appropriate form and then measures qubits 3 and 4 in the

basis {|σmn〉34 ;m,n ∈ {0,1}} ,

|σmn〉34 =
1

∑
p,q=0

Vmn,pq |pq〉34 , (4)

where Vmn,pq are matrix elements of V, a 4×4 unitary matrix, which depends on the phase infor-
mation {ϕ j}. If Bob’s result is mn (i.e., he finds a state |σmn〉34), he publicly broadcasts the values
of m and n. The state ρ

(kl)
3456 is further collapsed into

ρ
(kl)
3456→ ρ

(klmn)
56 =

34

〈
σmn
∣∣T (kl)

34 ρ
(kl)
3456T (kl)†

34

∣∣σmn

〉
34

P(klmn)
(5)
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with P(klmn) = Tr
(

34

〈
σmn
∣∣T (kl)

34 ρ
(kl)
3456T (kl)†

34

∣∣σmn

〉
34

)
the probability that Bob obtains the outcome

mn.
Finally, according to the values of kl and mn announced by Alice and Bob, Charlie applies

on ρ
(klmn)
56 an appropriate unitary operator R(klmn)

56 to obtain the state

ρ̃
(klmn)
56 = R(klmn)

56 ρ
(klmn)
56 R(klmn)†

56 . (6)

For a given state |ψ〉 the quality of the JRSP described above is determined by the fidelity

F =
1

∑
k,l,m,n=0

P(kl)P(klmn) 〈ψ| ρ̃(klmn) |ψ〉 . (7)

Since F is a function of amplitude and phase information of the state to be prepared, it is relevant
to average F over all the input information, yielding the so-called averaged fidelity F which is
state-independent. To calculate F we set

λ0 = cosη3, λ1 = sinη3 cosη2,
λ2 = sinη3 sinη2 cosη1, λ3 = sinη3 sinη2 sinη1

}
(8)

with ηi ∈ [0,π/2] and have [50]

F =
3!
π3

π

2∫
0

dη1

π

2∫
0

dη2

π

2∫
0

dη3

2π∫
0

dϕ1

2π∫
0

dϕ2

2π∫
0

dϕ3

3

∏
j=1

F cosη j.(sinη j)
2 j−1. (9)

III. EFFECT OF NOISES

Let us first consider the ideal scenario when the quantum channel is noiseless. The channel
we consider consists of 2 maximally entangled Greenberger-Horne-Zeilinger (GHZ) states

|Q〉135246 = |GHZ+〉135⊗|GHZ+〉246 , (10)

where

|GHZ±〉abc =
1√
2
(|000〉± |111〉)abc . (11)

The unitary matrix U in Eq. (2) that is relevant to Alice’s measurement basis can be explicitly
chosen in the form

U =


λ0 λ1 λ2 λ3
−λ1 λ0 −λ3 λ2
−λ2 λ3 λ0 −λ1
−λ3 −λ2 λ1 λ0

 . (12)

The operator T (kl)
34 mentioned in the second step of Bob’s operation after hearing Alice’s announce-

ment is
T (kl)

34 = Zk
3Xk

3 ⊗Zk⊕l
4 X l

4 (13)

with X j (Z j) the standard 2× 2 Pauli matrix σx (σz) acting on qubit j and ⊕ the addition mod
2. As for the unitary matrix V in Eq. (4) that generates Bob’s measurement basis, it is now
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unambiguously designed as

V =
1
2


1 e−iϕ1 e−iϕ2 e−iϕ3

1 −e−iϕ1 e−iϕ2 −e−iϕ3

1 e−iϕ1 −e−iϕ2 −e−iϕ3

1 −e−iϕ1 −e−iϕ2 e−iϕ3

 . (14)

Then the operators R(klmn)
56 mentioned above for Charlie’s operation can be constructed as

R(klmn)
56 = Zm

5 Xk
5 ⊗Zn

6X l
6. (15)

It is easy to verify that P(kl) = P(klmn) = 1/4 and F(klmn) = 1 for any k, l,m,n depending neither
on {λi} nor on {ϕ j}. That implies perfect JRSP which has both the success probability and the
fidelity equal to 1.

Now consider practical scenarios when the quantum channel is noisy. Since noisy envi-
ronment has tendency to make a maximal entanglement nonmaximal, to cope with such disentan-
glement process one might start with a nonmaximally entangled channel characterized by some
free parameters which, depending on the type of noise, can be tailored so that after surviving
the action of noise the initial nonmaximally entangled channel becomes more entangled or even
near-maximally entangled, resulting in a better quality compared with starting with maximally
entangled channel. Here, instead of (10), we start with the quantum channel of the form

|Q(θ)〉135246 = |GHZ+〉135⊗|GHZ+(θ)〉246 , (16)

where

|GHZ±(θ)〉abc = (cosθ |000〉± sinθ |111〉)abc. (17)

The angle θ is introduced in Eq. (16) as a parameter whose value can be chosen to optimize
the JRSP depending on the noise type. The matrix U is kept unchanged as in Eq. (12), but the
matrix V differs from that in Eq. (14), namely,

V → Ṽ =
1√
2


cosξ e−iϕ1 cosξ e−iϕ2 sinξ e−iϕ3 sinξ

cosξ −e−iϕ1 cosξ e−iϕ2 sinξ −e−iϕ3 sinξ

sinξ e−iϕ1 sinξ −e−iϕ2 cosξ −e−iϕ3 cosξ

sinξ −e−iϕ1 sinξ −e−iϕ2 cosξ e−iϕ3 cosξ

 , (18)

where we again introduce another parameter ξ for the purpose of optimizing the JRSP (see later).
Noise may arise by various mechanisms. Here, we study 4 typical mechanisms which are

commonly referred to as bit-flip noise (B), phase-flip noise (P), amplitude-damping noise (A) and
depolarizing noise (D). Effect of these noises can be described in terms of Kraus operators [48].
For the 3 first types of above-mentioned noise mechanisms there are 2 Kraus operators:

K(B)
1 (pB) =

√
1− pBI, K(B)

2 (pB) =
√

pBX , (19)

K(P)
1 (pP) =

√
1− pPI, K(P)

2 (pP) =
√

pPZ, (20)

K(A)
1 (pA) =

(
1 0
0
√

1− pA

)
, K(A)

2 (pA) =

(
0
√

pA
0 0

)
, (21)
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while for the last noise type the number of Kraus operators is 4 :

K(D)
1 (pD) =

√
1− 3

4
pD I, K(D)

2 (pD) =

√
1
4

pD X ,

K(D)
3 (pD) =

√
1
4

pDY, K(D)
4 (pD) =

√
1
4

pD Z, (22)

where Y is the standard Pauli matrix σy. In Eqs. (19) - (22) pJ measures strength of the J-type
noise. Suppose that each of the 6 qubits 1,2,3,4,5 and 6 of the initial quantum channel (16)
independently suffers a type of noise, then the overall influence of noises is modeled by virtue of a
superoperator that takes the state of the initial quantum channel ρ

(0)
135246(θ) = ρ

(0)
135⊗ρ

(0)
246(θ), with

ρ
(0)
135 = |GHZ+〉135 〈GHZ+| and ρ

(0)
246(θ) = |GHZ+(θ)〉246 〈GHZ+(θ)| , into a decohered state

ρ
(αγεβδζ )
135246 (θ) = ρ

(αγε)
135 ⊗ρ

(βδζ )
246 (θ), (23)

ρ
(αγε)
135 =

Nα

∑
i=1

Nγ

∑
k=1

Nε

∑
m=1

K(α)
i (p1α)⊗K(γ)

k (p3γ)⊗K(ε)
m (p5ε)

.ρ
(0)
135.
[
K(α)

i (p1α)⊗K(γ)
k (p3γ)⊗K(ε)

m (p5ε)
]†
, (24)

ρ
(βδζ )
246 (θ) =

Nβ

∑
j=1

Nδ

∑
`=1

Nζ

∑
n=1

K(β )
j (p2β )⊗K(δ )

` (p4δ )⊗K(ζ )
n (p6ζ )

.ρ
(0)
246(θ).

[
K(β )

j (p2β )⊗K(δ )
` (p4δ )⊗K(ζ )

n (p6ζ )
]†
. (25)

In Eqs. (24) and (25) K(α)
j (p1α) and p1α (0 ≤ p1α ≤ 1) are the jth Kraus operator and the noise

strength of the α-type noise, α ∈ {B,P,A,D}, that affects qubit 1 and Nα is the number of the α-
type noise Kraus operators. Similar notations hold for K(β )

j (p2β ), K(γ)
k (p3γ), K(δ )

` (p4δ ), K(ε)
m (p5ε),

K(ζ )
n (p6ζ ), p2β , p3γ , p4δ , p5ε, p6ζ and Nβ , Nγ , Nδ , Nε, Nζ . The noisy scenario of our interest is as

follows. Let Bob be the one who produces the quantum channel (16) at his site. Afterwards, he
sends qubits 1 and 2 through an α-type noisy channel to Alice and qubits 5 and 6 through a γ-type
noisy channel to Charlie, while keeping qubits 3 and 4 with himself. For simplicity, we assume
p1α = p2α = µα and p5γ = p6γ = νγ so ρ

(αγεβδζ )
135246 (θ) simplifies to

ρ
(αγ)
135246(θ) =

Nα

∑
i=1

Nγ

∑
k=1

K(α)
i (µα)⊗ I⊗K(γ)

k (νγ).ρ
(0)
135.
[
K(α)

i (µα)⊗ I⊗K(γ)
k (νγ)

]†

⊗
Nα

∑
j=1

Nγ

∑
`=1

K(α)
j (µα)⊗ I⊗K(γ)

` (νγ).ρ
(0)
246(θ).

[
K(α)

j (µα)⊗ I⊗K(γ)
` (νγ)

]†
. (26)

First, consider the situation when α = B and γ ∈ {B,P,A,D}. Following the procedure
outlined in the previous section we have calculated various averaged fidelities FBγ which have the
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explicit expressions as

FBB =
2
5
+

1
5
[µB (2νB−1)−νB] [µB (2νB−1)−νB +2]

+
1
80
[
(π2−16)µB +16

]
(νB−1)2 (sin2ξ + sin2θ)

+
1
40
[
8− (16−π

2)(µB−µ
2
B)
]
(νB−1)2 sin2ξ sin2θ , (27)

FBP =
2
5
+

1
5
(µB−2)µB +

1
80
[
(π2−16)µB +16

]
(1−2νP)(sin2ξ + sin2θ)

+
1
40
[
8− (16−π

2)(µB−µ
2
B)
]
(2νP−1)2 sin2ξ sin2θ , (28)

FBA =
2
5
+

1
20

[2µB (νA−1)−νA] [2µB (νA−1)−νA +4]

+
1
20

(1−2µB)νA [2µB (νA−1)−νA +2]cos2θ

+
1

160
[
(π2−16)µB +16

]√
1−νA(2−νA)(sin2ξ + sin2θ)

+
1

160
[
(π2−16)µB +16

]√
1−νAνA sin2ξ cos2θ

+
1
40
[
8− (16−π

2)(µB−µ
2
B)
]
(1−νA)sin2ξ sin2θ , (29)

FBD =
2
5
+

1
20

[2µB (νD−1)−νD] [2µB (νD−1)−νD +4]

+
1

160
[
(π2−16)µB +16

]
(νD−2)(νD−1)(sin2ξ + sin2θ)

+
1
40
[
8− (16−π

2)(µB−µ
2
B)
]
(1−νD)

2 sin2ξ sin2θ . (30)

As usually encountered, the fidelity depends on the noise type and decreases with increasing noise
strength. However, as will be seen shortly, by using partially entangled quantum channel (16) and
the modified matrix (18) we could somehow cope with the decoherence effect. This is thanks to
the fact that, conditioned on given noise type and strength, one can choose the values of θ and ξ

so that the averaged fidelity is optimal.
From Eqs. (27) and (30), the coefficients of both (sin2ξ + sin2θ) and sin2ξ sin2θ are

always positive so the optimal values of θ and ξ that maximize FBB and FBD are

θ
(BB)
opt = ξ

(BB)
opt = θ

(BD)
opt = ξ

(BD)
opt =

π

4
. (31)

As for FBP in Eq. (28), the coefficient of sin2ξ sin2θ is always positive, but the sign of the
coefficient of (sin2ξ + sin2θ) changes at νP = 1/2. Thus, the optimal value of FBP is achieved
when

θ
(BP)
opt = ξ

(BP)
opt =

{
π/4 forνP < 1/2,
−π/4 forνP > 1/2. . (32)
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The remaining case of FBA in Eq. (29) is much more complicated. Although it is easy to find out
that ξ

(BA)
opt = π/4, the value of θ

(BA)
opt must be determined from the conditions ∂FBA/∂ θ |

θ=θ
(BA)
opt

= 0

and ∂ 2FBA/∂ 2θ |
θ=θ

(BA)
opt

< 0, which yield

θ
(BA)
opt =

1
2

arctan
4
[
8− (16−π2)

(
µB−µ2

B
)]
(1−νA)+

[
16− (16−π2)µB

]√
1−νA (2−νA)[

(π2−16)µB +16
]√

1−νAνA +8(1−2µB)νA
[
2−νA−2µB (1−νA)

]
(33)

with sin2θ
(BA)
opt > 0 and cos2θ

(BA)
opt > 0 for µB, νA satisfying the inequality[

(π2−16)µB +16
]√

1−νAνA +8(1−2µB)νA [2−νA−2µB (1−νA)]> 0 (34)

or sin2θ
(BA)
opt > 0 and cos2θ

(BA)
opt < 0 for µB, νA satisfying the inequality[

(π2−16)µB +16
]√

1−νAνA +8(1−2µB)νA [2−νA−2µB (1−νA)]< 0. (35)

With such values of θ
(Bγ)
opt and ξ

(Bγ)
opt the optimal averaged fidelities FBγ,opt become

FBB,opt =
2
5
+

1
40

{
2µB (νB−1)

[
(π2−32)νB−π

2 +24
]
+8(4ν

2
B−8νB +3)

+µ
2
B
[
(48−π

2)ν2
B−2(32−π

2)νB +24−π
2]}, (36)

FBP,opt =
2
5
+

1
40

{
8µB (µB−2)+

[
(π2−16)µB +16

]
|1−2νP|

+
[
8− (π2−16)

(
µ

2
B−µB

)]
(1−2νP)

2
}
, (37)

FBD,opt =
2
5
+

1
80

{
48+12νD (3νD−8)−2(π2−24)µ2

B (νD−1)2

+µB (νD−1)
[
(3π

2−64)νD−4π
2 +96

]}
, (38)

FBA,opt =
2
5
+

1
160

{[
(16−π

2)µB−16
]√

1−νA (νA−2)

+8
[
2µB(νA−1)−νA

][
2µB (νA−1)−νA +4

]}
+

1
160

{{
4
[
8− (16−π

2)(µB−µ
2
B)
]
(1−νA)

+
[
16− (16−π

2)µB
]√

1−νA(2−νA)
}2

+
{

8(1−2µB)νA
[
2µB(νA−1)−νA +2

]
+
[
16− (16−π

2)µB
]√

1−νAνA

}2
}1/2

. (39)
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Figure 1 is the density plots of FBγ,opt in the µB-νγ space that clearly displays the domain in which
the quantum protocol is useful (i.e., the optimal averaged fidelity of the JRSP of a 2-qubit state
exceeds the classical limit equal to 2/5 [51]).

Fig. 1. Phase diagrams of the optimal averaged fidelities a) FBB,opt , b) FBP,opt , c) FBA,opt ,
and d) FBD,opt in the µB−νγ spaces. Colors illustrate the values of FBγ,opt belonging to
the quantum domain (i.e., FBγ,opt > 2/5), while white background shows the classical
domain (i.e., FBγ,opt < 2/5).

Roughly speaking, from Figs. 1a, 1c and 1d, an increase in µB or/and νγ leads to a decrease
in FBγ,opt . This means that with a given bit-flip noise acting on qubits 1 and 2, no matter the bit-
flip, amplitude-damping or depolarizing noise is added to qubits 5 and 6, the quality of the protocol
will become worse. For any value of µB there is always a chance to obtain the optimal averaged
fidelities FBγ,opt in quantum domain (i.e. the area in which FBγ,opt > 2/5), while there exists a limit
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of the values of νγ , denoted as ν lim
γ , from which for any νγ ≥ ν lim

γ the protocol is no longer useful
(i.e., FBγ,opt ≤ 2/5). It can be understood that a greater value of ν lim

γ is equivalent to a weaker
influence of γ-type noise on the protocol. Comparing three Figs. 1a, 1c and 1d in more depth,
one can see that ν lim

A > ν lim
D > ν lim

B and the area of the quantum domain for γ = A is the biggest
and that for γ = B is the smallest. Different from the quantum domains of FBB,opt , FBA,opt and
FBD,opt , the optimal averaged fidelity FBP,opt in Fig. 1b is symmetric with respect to the segment
νP = 1/2, which results in the fact that a nonclassical fidelity can be obtained even in the region
of strong noise strengths. Such symmetry was found in Refs. [41, 47], however, in this context
it can be clearly shown from Eq. (37) in which FBP,opt(µB,1/2−∆νP) = FBP,opt(µB,1/2+∆νP)
with 0≤ ∆νP ≤ 1/2 and its physical origin can be explained as follows. Without loss of generality
we consider the scenario in which qubits 1 and 2 are not subjected to any noises, but qubits 5
and 6 at the same time are affected by the phase-flip noise with noisy strength pP. It is necessary
to recall the action of the phase-flip noise on a qubit: it flips the phase of the qubit being in the
excited state with probability of pP and lets the ground state unchanged with the probability of
1− pP [49]. For convenience, let us denote ρ

(+)
135(246) = |GHZ+〉135(246) 〈GHZ+| and ρ

(−)
135(246) =

|GHZ−〉135(246) 〈GHZ−| . In the case of pP < 1/2, according to Eq. (32), the value of θ in Eq. (17)
is chosen as π/4. Then after being subjected to the phase-flip noise the initial quantum channel∣∣Q(π

4 )
〉

135246

〈
Q(π

4 )
∣∣ turns out to be a mixed state (1− pP)

2ρ
(+)
135 ⊗ρ

(+)
246 + pP(1− pP)ρ

(+)
135 ⊗ρ

(−)
246 +

pP(1− pP)ρ
(−)
135 ⊗ ρ

(+)
246 + p2

Pρ
(−)
135 ⊗ ρ

(−)
246 . This implies that if pP is approaching to 0, the noise-

induced quantum channel is becoming closer and closer to ρ
(+)
135 ⊗ ρ

(+)
246 , which is the quantum

channel in the noiseless case (Eq. (10)). Therefore, it can be seen that with θ = ξ = π/4, the
smaller value of pP the better the performance of the JRSP protocol. Next, in case pP is larger than
1/2, according to Eq. (32), θ in Eq. (17) is optimally chosen as −π/4. Similar to the preceding
case, the effect of the phase-flip noise is to transform the initial pure quantum channel to a mixed
state pP(1− pP)ρ

(+)
135 ⊗ ρ

(+)
246 + (1− pP)

2ρ
(+)
135 ⊗ ρ

(−)
246 + p2

Pρ
(−)
135 ⊗ ρ

(+)
246 + pP(1− pP)ρ

(−)
135 ⊗ ρ

(−)
246 .

Now, it is clear that a larger value of pP leads the initial quantum channel closer to the state
ρ
(−)
135 ⊗ρ

(+)
246 . However, one can check that in the noiseless case, with the quantum channel chosen

as |GHZ−〉135⊗ |GHZ+〉246, which coincides with ρ
(−)
135 ⊗ ρ

(+)
246 , the matrix in Eq. (12) and the

operators in Eqs. (13) and (15) being unchanged and the matrix of Eq. (14) replaced by Ṽ with
ξ =−π/4 in Eq. (18), the JRSP protocol is perfect. As a result, it can be said that with both θ and
ξ chosen as −π/4, the larger pP is the closer the noisy JRSP protocol is to the perfect one. Based
on the above explanation, it is not difficult to check that in order to obtain a quantum averaged
fidelity larger than 2/5 even in the domain of bit-flip noise strength Bob should first apply the
Pauli operator X to the qubits before sending them via bit-flip environments. The results of this
scheme illustrated in Fig. 2 show that all the averaged fidelities amount to 1 at (µB,νB) = (1,1)
or (µB,νγ) = (1,0) for γ 6= B. Hence, different from the results of Refs. [41, 47] in case of the
bit-flip noise, our scheme here can raise the fidelity when the noisy strength is considerable. In
addition to suitable selection of µB and νA, the choice of θ (BA) to be θ

(BA)
opt 6= π/4 as in Eq. (33) at

which the state of qubits 2,4 and 6 becomes maximally entangled, implying a better quality of the
JRSP for a lesser amount of shared entanglement. This somewhat surprising result was also seen
in quantum teleportation [41] and JRSP of a 1-qubit state [47]. That is to say, application of the
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Pauli operator before transmitting qubits and choice of appropriate value of θ (Bγ) can be regarded
as a way to cope with noise caused by the environment.

Fig. 2. Phase diagrams of the optimal averaged fidelities a) FBB,opt , b) FBP,opt , c) FBA,opt ,
and d) FBD,opt in the µB−νγ spaces in case all qubits subjected to bit-flip noise are applied
to the Pauli operator X before being sent through noisy environments. Colors illustrate
the values of FBγ,opt belonging to the quantum domain (i.e., FBγ,opt > 2/5), while white
background shows the classical domain (i.e., FBγ,opt < 2/5).

Next, consider α = P and γ ∈ {B,P,A,D}. The optimal averaged fidelities FPγ,opt are
achieved with the following values of θ

(Pγ)
opt and ξ

(Pγ)
opt :

θ
(PB)
opt = ξ

(PB)
opt = θ

(PD)
opt = ξ

(PD)
opt = ξ

(PA)
opt =

{
π/4 for µP < 1/2,
−π/4 for µP > 1/2, (40)

θ
(PP)
opt = ξ

(PP)
opt =

{
π/4 for(1−2µP)(1−2νP)> 0,
−π/4 for(1−2µP)(1−2νP)< 0, (41)
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θ
(PA)
opt =

1
2

arctan
2(1−2µP)

√
1−νA

νA
(42)

with sin2θ
(PA)
opt > 0 and cos2θ

(PA)
opt > 0 for µP < 1/2 or sin2θ

(PA)
opt < 0 and cos2θ

(PA)
opt > 0 for µP >

1/2. The explicit expressions of FPγ,opt are collected in the Appendix.
From Fig. 3 one sees that the useful regions in Figs. 3a, 3c and 3d have similar patterns

with the symmetry with respect to the segment µP = 1/2. However, the quantum area for FPA,opt
is greater than those for either FPB,opt or FPD,opt . Moreover, Fig. 3b shows that the quantum area
is symmetric with respect not only to the segment µP = 1/2 but also to the segment νP = 1/2 and
it spreads over the full parameter range. This, therefore, is an interesting result since no matter
how strong noises are the protocol is always useful. The reason for those symmetries is similar to
what explained in Fig. 1b and the quantum domain of FPB,opt can be found in a bigger range of νB
by employing the same scheme whose result is demonstrated in Fig. 2. It is noteworthy to stress
that the value of θ

(PA)
opt in Eq. (42) does not need to be equal to π/4, again implying that a better

quality of the JRSP is obtained by using an initial quantum channel with nonmaximal degree of
entanglement.

Now, address the scenario in which α = A and γ ∈ {B,P,A,D}. The values of θ
(Aγ)
opt and

ξ
(Aγ)
opt can be derived as

ξ
(AB)
opt = ξ

(AA)
opt = ξ

(AD)
opt =

π

4
, (43)

θ
(AB)
opt =

1
2

arctan
(1−νB)

2
{√

1−µA
[
(π2−16)µA +32

]
+32(1−µA)

}
µA

{
(16−π2)

√
1−µA (1−νB)

2−8(2νB−1)
[
2(µA−1)νB−µA +2

]}
(44)

with sin2θ
(AB)
opt > 0 and cos2θ

(AB)
opt > 0 for µA,νB satisfying the inequality(

16−π
2)√1−µA (1−νB)

2−8(2νB−1)
[
2(µA−1)νB−µA +2

]
> 0

or with sin2θ
(AB)
opt > 0 and cos2θ

(AB)
opt < 0 for µA,νB satisfying the inequality(

16−π
2)√1−µA (1−νB)

2−8(2νB−1)
[
2(µA−1)νB−µA +2

]
< 0, (45)

θ
(AA)
opt =

1
2

arctan
MAA

NAA
(46)

with sin2θ
(AA)
opt > 0 and cos2θ

(AA)
opt for any µA,νA and

MAA =
1

160

{√
(µA−1)(νA−1)

[
32− (π2−16)µA (νA−1)−16νA

]
+32(µA−1)(νA−1)

}
, (47)

NAA =
1

160

{√
(µA−1)(νA−1)

[
(π2−16)µA (νA−1)+16νA

]
+8
[
µA(1−2νA)+νA

][
µA (2νA−1)+2−νA

]}
, (48)
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Fig. 3. Phase diagrams of the optimal averaged fidelities a) FPB,opt , b) FPP,opt , c) FPA,opt ,
and d) FPD,opt in the µP−νγ spaces. Colors illustrate the values of FPγ,opt belonging to
the quantum domain (i.e., FPγ,opt > 2/5), while white background shows the classical
domain (i.e., FPγ,opt < 2/5).

θ
(AD)
opt =

1
2

arctan
√

1−µA
[
(π2−16)µA +32

]
(2−νD)+64(µA−1)(νD−1)

µA

{[
(16−π2)

√
1−µA +16

]
(2−νD)+16µA (νD−1)

}
with sin2θ

(AD)
opt > 0 and cos2θ

(AD)
opt > 0 for any 0 < µA ≤ 1 and 0≤ νD < 1,

ξ
(AP)
opt =

{
π/4 forνP < 1/2,
−π/4 forνP > 1/2, (49)

θ
(AP)
opt =

1
2

arctan
(1−2νP)

{
32(µA−1)(2νP−1)+

√
1−µA

[
(π2−16)µA +32

]}
µA [(π2−16)

√
1−µA (2νP−1)−8µA +16]
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with sin2θ
(AP)
opt > 0 and cos2θ

(AP)
opt > 0 for νP < 1/2 or with sin2θ

(AP)
opt < 0 and cos2θ

(AP)
opt > 0 for

νP > 1/2. The explicit expressions of FAγ,opt are given in the Appendix.

Fig. 4. Phase diagrams of the optimal averaged fidelities a) FAB,opt , b) FAP,opt , c) FAA,opt ,
and d) FAD,opt in the µA−νγ spaces. Colors illustrate the values of FAγ,opt belonging to
the quantum domain (i.e., FAγ,opt > 2/5), while white background shows the classical
domain (i.e., FAγ,opt < 2/5).

As seen from Fig. 4, since the quantum domain spreads over almost all values of noise
strengths, the value of FAA,opt appears larger than FAB,opt , FAP,opt and FAD,opt . Furthermore, while
FAB,opt and FAD,opt decrease with any rise in noise strengths, there is a region in which FAA,opt
is found to be greater even with stronger noise strengths. The above result is similar to the ones
obtained for quantum teleportation in Refs. [37, 39].
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Finally, the scenario with α = D and γ ∈ {B,P,A,D} has the results as follows

θ
(DB)
opt = ξ

(DB)
opt = θ

(DD)
opt = ξ

(DD)
opt = ξ

(DA)
opt =

π

4
, (50)

θ
(DP)
opt = ξ

(DP)
opt =

{
π/4 forνP < 1/2,
−π/4 forνP > 1/2, (51)

θ
(DA)
opt =

1
2

arctan

[
(π2−16)µD +32

]√
1−νA (2−νA)+64(µD−1)(νA−1)

νA

{[
(π2−16)µD +32

]√
1−νA +16

[
µD (νA−1)−νA +2

]} (52)

with sin2θ
(DA)
opt > 0 and cos2θ

(DA)
opt > 0 for any 0≤ µD < 1 and 0< νA≤ 1. The explicit expressions

of FDγ,opt are provided in the Appendix.

Fig. 5. Phase diagram of the optimal averaged fidelities a) FDB,opt , b) FDP,opt , c) FDA,opt ,
and d) FDD,opt in the µD− νγ spaces. Colors illustrate the values of FDγ,opt belonging
to the quantum domain (i.e., FDγ,opt > 2/5), while white background shows the classical
domain (i.e., FDγ,opt < 2/5).
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As shown in Fig. 5, the quantum area of FDA,opt keeps superior to those of FDB,opt and
FDD,opt and there is a symmetry at the change of FDP,opt .

IV. CONCLUSION

With the assumption of 2 qubits of either the first or the second preparer being affected by
noises during the process of distribution of the initial quantum channel, we have tried to find a
way to enhance the averaged fidelity of the JRSP of an arbitrary 2-qubit state. The noises con-
cerned include the bit-flip, phase-flip, amplitude-damping and depolarizing. To describe the effect
of such noises, superoperators in form of sums of Kraus operators are exploited. By introducing
in the initial quantum channel and the basis measurement of the second preparer two parameters
which are controllable versus the strength of given noises, the averaged fidelities are optimized
in different noisy scenarios. Then the results of the optimization are represented in phase-space
diagrams to clarify visually the noise domain in which the optimal averaged fidelity is greater than
the classical limit. Through analyzing the diagrams we have encountered the symmetrical charac-
ter of the optimal averaged fidelity subjected to the phase-flip noise which is basically explained.
Besides, the fidelity under the influence of the bit-flip noise is also optimized in a different manner:
Bob, who produces the quantum channel, applies the Pauli operator X on qubits which are sent
through bit-flip environments in case when he knows that the noise strength is strong. Essentially,
depending on the range of noisy parameter, suitable values of the introduced control parameters
θ and ξ can be chosen in case of the phase-flip noise or applying the Pauli operator X in case
of the bit-flip noise so that to transform the initial state of qubits 1, 3 and 5 (2, 4 and 6) from
one of the GHZ states into other GHZ states or to change Bob’s measurement basis. Therefore,
the optimization of the bit-flip noise as well as that of the phase-flip noise does not change the
entanglement degree of the quantum channel. In contrast to this, the optimization for the JRSP
affected by the amplitude-damping noise showed that the value of θ

(Aγ)
opt or θ

(αA)
opt is varied with

the change of noise parameters and possibly being different from π/4, which in principle makes
the entanglement of the quantum channel changed. Remarkably, when qubits 1 and 2 experi-
ence the amplitude-damping noise, adding another noise on qubits 5 and 6 can broaden the area
of quantum domain even in considerable noise parameter ranges only when that noise is again
amplitude-damping. Such optimization should be interpreted as the optimization which is accom-
plished through dissipative interactions with noisy environments. The obtained results might shed
some light on ways of improving the realistic manipulation of JRSP.
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APPENDIX

The explicit expressions of Fβγ,opt , with β ∈ {P,A,D} and γ ∈ {P,B,A,D}, were derived
and are shown in this appendix.

FPB,opt =
2
5
+

1
5
(νB−2)νB +

1
5
(2µP−1)2 (νB−1)2 +

2
5
(νB−1)2 |1−2µP| , (53)

FPP,opt =
2
5
+

1
5
(2µP−1)2 (2νP−1)2 +

2
5

∣∣(2µP−1)(2νP−1)
∣∣, (54)

FPA,opt =
2
5
+

1
20

(νA−4)νA +
1
10

√
1−νA (2−νA) |1−2µP|

+
1

20

{{
2(1−2µP)

[
2(1−νA) |1−2µP|+

√
1−νA (2−νA)

]}2

+
{

νA
[
2
√

1−νA|1−2µP|+2−νA
]}2
}1/2

, (55)

FPD,opt =
2
5
+

1
20

(νD−4)νD +
1
5
(2µP−1)2 (νD−1)2 +

1
5
(νD−2)(νD−1) |1−2µP|, (56)

FAB,opt =
2
5
+

1
160

{√
1−µA

[
(π2−16)µA +32

]
(νB−1)2

+8
[
2(µA−1)νB−µA

][
2(µA−1)νB−µA +4

]}
+

1
160

{
µ

2
A

{(
16−π

2)√1−µA (νB−1)2 +8(1−2νB)
[
2(µA−1)νB−µA +2

]}2

+(νB−1)4 [32−32µA +
√

1−µA(π
2
µA−16µA +32)

]2}1/2

, (57)

FAP,opt =
2
5
+

1
20

(µA−4)µA +
1

160

√
1−µA

[
(π2−16)µA +32

]
|1−2νP|

+
1

160

{
(1−2νP)

2
{√

1−µA
[
(π2−16)µA +32

]
+32(1−µA) |1−2νP|

}2

+µ
2
A
[
(16−π

2)
√

1−µA |1−2νP|+8(2−µA)
]2}

, (58)

FAA,opt =
2
5
+

1
160

{√
(µA−1)(νA−1)

[
32− (π2−16)µA (νA−1)−16νA

]
+8
[
µA (2νA−1)−νA

][
µA (2νA−1)−νA +4

]}
+
(
M2

AA +N2
AA
)1/2

(59)
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with MAA and NAA defined as in Eqs. (47) and (48),

FAD,opt =
2
5
+

1
320

{
16
[
(µA (νD−1)−νD

][
µA (νD−1)−νD +4

]
+
√

1−µA
[
(π2−16)µA +32

]
(νD−2)(νD−1)

}
+

1
320

{
(1−νD)

2
{√

1−µA
[
(π2−16)µA +32

]
(2−νD)+64(µA−1)(νD−1)

}2

+µ
2
A (1−νD)

2
{[

(16−π
2)
√

1−µA +16
]
(2−νD)+16µA (νD−1)

}2
}1/2

, (60)

FDB,opt =
2
5
+

1
80

{
4
{

µ
2
D
[
4νB (3νB−5)+9

]
−4µD (νB−1)(7νB−6)

+4
[
4(νB−2)νB +3

]}
+π

2(1−µD)µD (νB−1)2

}
, (61)

FDP,opt =
2
5
+

1
80

{
(1−µD)

[
(π2−16)µD +32

]
|1−2νP|+16(µD−1)2 (1−2νP)

2

+4µ
2
D−16µD

}
, (62)

FDA,opt =
2
5
+

1
320

{
(1−µD)

[
(π2−16)µD +32

]√
1−νA (2−νA)

+16
[
µD(νA−1)−νA

][
µD(νA−1)−νA +4

]}
+

1
320

{
(1−µD)

2
{[

(π2−16)µD +32
]√

1−νA(2−νA)+64(1−µD)(1−νA)
}2

+(1−µD)
2

ν
2
A

{[
(π2−16)µD +32

]√
1−νA +16

[
µD (νA−1)−νA +2

]}2
}1/2

,

(63)

FDD,opt =
2
5
+

1
160

{
8
[
µ

2
D (νD−1)(7νD−9)−8µD (νD−1)(2νD−3)

+3(νD−2)(3νD−2)
]
+π

2(1−µD)µD (2−νD)(1−νD)
}
. (64)
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