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HILLERY-TYPE AMPLITUDE SQUEEZING IN LINEAR AND
NONLINEAR FAN-STATES

TRUONG MINH DUC

Physics Department, Hue University

Abstract. Squeezing properties of the Hillery-type N -powered amplitude are investigated in
the linear and nonlinear fan-state. For a given k, squeezing may appear to the even power
N = 2k and the number of directions along which the Nth-powered amplitude is squeezed is
exactly equal to N, in both linear (the light field) and nonlinear (the vibrational motion of
the trapped ion) fan-states.

I. INTRODUCTION

The squeezed state is a nonclassical state, which has been known for a long time
(see, e.g., a recent review in [1]). This state is frequently used in quantum optics and
in other branches of quantum physics. Squeezed states have attracted much interest
thanks to their potential applications in communication networks, detecting extremely
weak fields, waveguide tap [2] and quantum information theory [3-7]. The conventional
squeezed states [8] have been generalized to different types of higher-order. The first type
of higher-order amplitude squeezing was given by Hong and Mandel [9]. The second type
of higher-order squeezing which is qualitatively different from that by Hong and Mandel,
was defined by Hillery [10] and then developed further by many authors (see, e.g., [11-13]).
The Hong-Mandel-type N -order amplitude squeezing has recently been studied in the fan-
states | ξ; 2k, f〉F which is introduced in [14] as a linear superposition of 2k 2k-quantum
nonlinear coherent states in the phase-locked manner. In this paper, we study properties
of the Hillery-type N -powered amplitude squeezing in the fan-states. We call these states
linear if f = 1 and nonlinear if f 6= 1. In the nonlinear case f is an arbitrary nonlinear
operator-valued function of n̂ = a+a with a (a+) the boson field annihilation (creation)
operator. Keeping the notation as in [15], the normalized fan-state is defined as

| ξ; 2k, f〉F = D
−1/2
k

2k−1∑

q=0

| ξq; 2k, f〉, (1)

where k = 1, 2, 3, ...; ξq = ξ exp( iπq
2k ) with ξ a complex number,

Dk = Dk(| ξ |2) =
∞∑

m=0

| ξ |4km| Jk(m) |2

(2km)![f(2km)(!)2k]2
, (2)

with Jk(m) =
∑2k−1

q=0 exp(iπqm), and

| ξq; 2k, f〉 =
∞∑

n=0

ξ2kn
q√

(2kn)!f(2kn)(!)2k
| 2kn〉 (3)
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with | 2kn〉 a Fock state. The state | ξq; 2k, f〉 is a sub-state of the multi-quantum nonlinear
coherent states [16-19], the eigenstates of the operator a2kf(n̂) with k a positive integer
and f an arbitrary real nonlinear operator-valued function of n̂. The notation (!)2k is
understood as follows

f(p)(!)2k =
{

f(p)f(p− 2k)f(p− 4k)...f(q) if p ≥ 2k; 0 ≤ q < 2k

1 if 0 ≤ p < 2k
. (4)

The N-powered amplitude squeezing is associated with the operator QN (ϕ) of the
form

QN(ϕ) =
1
2
(aNe−iNϕ + a+NeiNϕ) (5)

with ϕ an angle determining the direction of 〈QN(ϕ)〉 in the complex plane and the
operators a, a+ obeying the commutation relation [a, a+] = 1. According to [12-13], a
state | ...〉 is said to be Hillery-type amplitude Nth power squeezed in the direction ϕ if

〈(∆QN(ϕ))2〉 <
1
4
〈FN 〉 =

1
4
〈[aN , a+N ]〉 (6)

where ∆QN (ϕ) ≡ QN(ϕ)− 〈QN(ϕ)〉 . It is easy to get [13]

〈(∆QN(ϕ))2〉 =
1
4
〈FN 〉 + 〈: (∆QN(ϕ))2 :〉 (7)

with
〈: (∆QN(ϕ))2 :〉 =

1
2
{〈a+NaN〉 + <[e−i2Nϕ〈a2N〉]− 2

(
<[e−iNϕ〈aN 〉]

)2} (8)

and

〈FN 〉 =
N∑

q=1

N !N (q)

(N − q)!q!
〈a+(N−q)aN−q〉 (9)

where :...: denotes a normal ordering of the operators and N (q) = N(N − 1)...(N − q + 1).
For convenience, the squeezing degree is examined by a function S defined as

S =
4〈: (∆QN(ϕ))2 :〉

〈FN 〉 (10)

in terms of which the state is said to be amplitude Nth power squeezed in the direction
ϕ if −1 ≤ S < 0. We choose the real axis along the direction of ξ allowing to treat ξ as a
real number. In the fan-state, we have [15]

〈a+lam〉k =
ξ(l−m)

Dk(ξ2)
I(

l − m

2k
)

∞∑

n=0

θ(2kn − m)ξ4knJk(n + l−m
2k )Jk(n)

(2kn − m)!f(2kn)(!)2kf(2kn + l − m)(!)2k
(11)

where 〈...〉k ≡ F 〈ξ; 2k, f | ... | ξ; 2k, f〉F . The function I(x) equals unity if x is an integer
and zero otherwise. The step function θ(2kn − m) can be removed and replaced in the
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summation n = 0 by n = nmin with nmin equal to the integer part of (m + 2k − 1)/2k.
The properties of Jk(n) can be given in the form

Jk(n) =
{

2k if n even integers
0 if n odd integers

(12)

and

Jk(n)Jk(n + n′) =
{

2k2(1 + (−1)n) if n′ even integers
0 if n′ odd integers

. (13)

The general expression of the squeezing degree is derived analytically for arbitrary
ξ, k, N and f in the form

S =
2{〈a+NaN 〉k − (〈aN〉k)2 + cos(2Nϕ)

(
〈a2N〉k − (〈aN〉k)2

)
}

∑N
q=1

N !N (q)

(N−q)!q!〈a+(N−q)aN−q〉k
(14)

with

〈aN 〉k =
ξ−N

Dk(ξ2)
I(−N

2k
)

∞∑

n=0

θ(2kn − N)ξ4knJk(n − N
2k )Jk(n)

(2kn − N)!f(2kn)(!)2kf(2kn − N)(!)2k
(15)

and

〈a+NaN 〉k =
2k2

Dk(ξ2)

∞∑

n=0

θ(2kn − N)ξ4kn(1 + (−1)n)
(2kn− N)![f(2kn)(!)2k]2

. (16)

Since 〈a+NaN〉k is always positive and 〈a2N〉k 6= 0 if N is even and 〈a2N〉k = 0 if N

is odd, so that, the function S in (14) may becomes negative only if N is even, in which
case squeezing is possible.

In what follows we consider separately the linear case which corresponds to the light
field and the nonlinear case which may be associated with the vibrational motion of the
trapped ion.

II. LINEAR CASE

For an arbitrary N , Eqs.(15)-(16) reduce to

〈aN〉k =
ξ−N

Dk(ξ2)
I(−N

2k
)

∞∑

n=0

θ(2kn − N)ξ4knJk(n − N
2k )Jk(n)

(2kn − N)!
(17)

and

〈a+NaN 〉k =
2k2

Dk(ξ2)

∞∑

n=0

θ(2kn − N)ξ4kn(1 + (−1)n)
(2kn − N)!

. (18)

We note that in (17)-(18) for a given k, 〈aN〉k = ξ4k if N = 4k and 〈aN〉k = 0 if
N 6= 4k. Hence, 〈a+NaN〉k ≥ 〈a2N〉k ≥ (〈aN〉k)2 if N 6= 2k and the function S is positive
resulting in no squeezing. For N = 2k, the squeezing is possible and may occur along N

directions, as will be shown explicitly below for k = 1 and 2.
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For k = 1 (N = 2) we have obtained

S
(k=1)
ϕ,N=2 =

ξ4[cosh(ξ2) − cos(ξ2) + D1 cos(4ϕ)]
2ξ2(sinh(ξ2) − sin(ξ2)) + D1

(19)

and squeezing occurs whenever

cos(4ϕ) < h(| ξ |) =
cos(ξ2) − cosh(ξ2)

D1
≤ 0, (20)

with
D1 = cosh(ξ2) + cos(ξ2). (21)

The function h(| ξ |) equals zero at ξ = 0 and decreases when | ξ | increases. There
is no squeezing for | ξ |≥ ξc = 1.25331 for which h(| ξ |) ≤ −1 and no ϕ can be found
to make S

(k=1)
ϕ,N=2 negative. Fig. 1 is a 3D plot of S

(k=1)
ϕ,N=2 as a function of | ξ | and ϕ.

A maximal squeezing occurs simultaneously along the two directions ϕ = (2n+1)π
4 with

n = 0, 1. The two coexistent directions of squeezing are shown by a polar plot of S
(k=1)
ϕ,N=2

(Fig. 2) at | ξ |= 0.8 which looks like a flower . The small wings correspond to squeezing,
the big ones to stretching.
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Fig. 1. The S ≡ S
(k=1)
ϕ,N=2 as a function of | ξ | and ϕ showing two

directions of squeezing.

For k = 2 (N = 4) we have obtained

S
(k=2)
ϕ,N=4 =

ξ8

4

cosh(ξ2) + cos(ξ2) − 2 cosh( ξ2
√

2
) cos( ξ2

√
2
) + D2 cos(8ϕ)

3ξ4[cosh(ξ2) − cos(ξ2)− 2 sinh( ξ2
√

2
) sin( ξ2

√
2
)] + C + 2B − D2

, (22)

with

D2 = cosh(ξ2) + cos(ξ2) + 2 cosh(
ξ2

√
2
) cos(

ξ2

√
2
), (23)
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A = ξ2[sinh(ξ2)− sin(ξ2) +
√

2(sinh(
ξ2

√
2
) cos(

ξ2

√
2
) − sin(

ξ2

√
2
) cosh(

ξ2

√
2
))], (24)

B = 3ξ4[cosh(ξ2) − cos(ξ2) − 2 sinh(
ξ2

√
2
) sin(

ξ2

√
2
)] + 6A + 2D2 (25)

and

C = 2ξ6(sinh(ξ2) + sin(ξ2) −
√

2[sinh(
ξ2

√
2
) cos(

ξ2

√
2
) + sin(

ξ2

√
2
) cosh(

ξ2

√
2
)]). (26)
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Fig. 2. The polar plots of the S
(k=1)
ϕ,N=2

for | ξ |= 0.8.
Fig. 3. The polar plots of the S

(k=2)
ϕ,N=4

for | ξ |= 1.25.

The maximal squeezing occurs along the four directions ϕ = (2n+1)π
8 with n =

0, 1, 2, 3. Fig. 3 is a polar plot of S
(k=2)
ϕ,N=4 at | ξ |= 1.25 as a function of ϕ. The four

directions of squeezing are watched.
In general, for a given k, the Hillery-type N-powered amplitude squeezing depends

on ϕ only if N = 2k in which case squeezing is possible. The number of squeezing directions
scales precisely as 2k.

III. NONLINEAR CASE

In this section, we consider the Hillery-type N-powered amplitude squeezing of the
vibrational motion of the trapped ion. In Refs.19-20, the specific function f and the
quantity ξ are

f(n + 2k) =
n!L2k

n (η2)
(n + 2k)!L0

n(η2)
, ξ2k = − eiφΩ0

(iη)2kΩ1
, (27)

where Lm
n (x) is the nth generalized polynomial in x for parameter m, η is the Lamb-Dicke

parameter, φ = φ1 − φ0 with φ0(φ1) the phase of the driving laser which is resonant with
(detuned to the 2kth lower sideband of) the electronic transition of the ion, and Ω0,1 the
pure electronic transition Rabi frequencies. In the linear fan-states, there are two physical
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parameters k and ξ. But in the case of the driven trapped ion, there are more physical
parameters: The Ω0,1 which are controllable by the driving laser fields and η which is
controllable by trapping potential. Using (14-16) and (27), we can derive the Hillery-type
N-powered amplitude squeezing for arbitrary N and k. For the specific nonlinear function
f in (27), the simulation shows that for a given k the Hillery-type is squeezed only for
N = 2k in some range of the values of ξ2 and η2. In the trapped ion, by controlling
the Lamb-Dicke parameter and the pure transition Rabi frequencies, the higher order
squeezing in nonlinear fan-states may occur along N directions. Fig. 4 plots S

(k=1)
ϕ,N=2 for

ϕ = π
4 and η2 = 0.05 as a function of ξ2. In this case, the squeezing exists for ξ such

that 0 < ξ2 < 1.01 and maximal squeezing at ξ2 = 0.67. Fig. 5 plots S
(k=2)
ϕ,N=4 for ϕ = π

8

as a function of ξ2. We plot for η2 = 0.1716 and η2 = 0.1722 in order to show that the
squeezing exists in some range of the values of ξ2 and degrees of the squeezing depend on
the changing of η2. In general, for a given k and arbitrary values of even orders N = 2k,
we could choose η and ξ such that 〈a2N〉k > 〈a+NaN 〉k and squeezing appears equally
maximal at

ϕmax =
π

2N
(1 + 2n) with n = 0, 1, ...,N − 1. (28)
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Fig. 4. The S ≡ S
(k=1)
ϕ,N=2 as a function of ξ2

for ϕ = π
4 and η2 = 0.05.

Fig. 5. The S ≡ S
(k=2)
ϕ,N=4 as a function of ξ2

for ϕ = π
8 , η2 = 0.1716 and η2 = 0.1722.

IV. CONCLUSION

We have investigated the Hillery-type N-powered amplitude squeezing for the linear
( the light field) and nonlinear fan-states (the trapped ion). The formulas derived above
are applicable to arbitrary k, N and f and the number of squeezing directions does not
depend on whether the state is linear or nonlinear. Given k, the squeezing is possible
for N = 2k in both cases and appears simultaneously along N different directions. The
squeezing directions in Hillery-type of higher order for the linear fan-states case occur along
N directions (see (28)). For the nonlinear fan-states as the trapped ion, the number of
squeezing directions is the same as for the linear fan-states but the degree of the squeezing
themselves are adjustable by controlling the parameters of the laser-driven trapped-ion
system (see Fig. 5 for example).
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