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ON THE LOOP EXPANSION OF THE EFFECTIVE ACTION
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Abstract. Based on the DeWitt formula the loop expansion of the effective action is easily
established. Extending to the system with finite density we develop the in-medium DeWitt
formula, which is the starting point for setting up loop expansion of the in-medium effective
action.

I. INTRODUCTION

It is well known that the effective action play a crucial role in quantum field theory,
this is because all complete quantum information of a physical system can be extracted
from its effective action. Morever, the effective action proves to be very powerful in
solving problem relating to the symmetry breaking [1,2] and the symmetry restoration at
high temperature. Basically the effective action method is nonperturbative, therefore it is
very convenient applying to the phase transition and other nonperturbative phenomena.
In this respect, to calculate the effective action of a given quantum system is in the first
priority of all studies. There are so far several methods dealing with loop expansion of
the effective action [3,4]. However, all of them, perhaps, are cumbersome enough and,
therefore, are not very convenient.

In Section 2 of this paper, starting from the old formula of DeWitt [5] we derive
the formula for loop expansion of the effective action. Section 3 is devoted to establishing
the effective action in medium with non-vanishing density of matter. The conclusion and
discussion are given in Section 4.

II. LOOP EXPANSION FORMULAR

For the sake of simplicity let us begin with the scalar field described by the La-
grangian:

L = L0[Φ] + LI [Φ], Φ = {Φ1 , · · · , ΦN} ,

in which L0 is the Lagrangian of free fields and LI corresponds to the interacting fields.
The generating functional for connected Green functions reads

ei W [J ] = N

∫
DΦ exp

{
i

∫
dx [L + JkΦk]

}
(1)

where N is the normalisation constant.
The vacuum expectation value of Φi in the presence of the external source Ji(x) is

given as
δ W [J ]
δJi(x)

= 〈Φi(x)〉J = ϕi(x) (2)
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The effective action Γ[ϕ], corresponding to ϕ(x), is defined to be the Legendre transform
of W[J]:

Γ [φ] = W [J ] −
∫

dx Ji(x)ϕi(x) (3)

In favour of (2) it is clear that
δ Γ [φ]
δϕi(x)

= −Ji(x) (4)

This is the equation of motion for ϕ(x), containing only classical quantities (c-number).
Next, let us introduce formally the classical action SJ [Φ] in the presence of external

sourse J(x):
SJ [Φ] =

∫
dx [L[Φ] + Ji(x) Φi(x)]

= S [Φ] +
∫

dxJi(x) Φi(x)

where S[Φ] is the conventional classical action,

S [Φ] =
∫

dxL[Φ]

From the equation
δ SJ [Φ]
δΦi(x)

= 0

it follows that
δ S [Φ]
δΦi(x)

= −Ji(x) (5)

which is the equations of operators (q-number).
Combining (4) and (5) we arrive at

δ Γ [φ]
δϕi(x)

=
〈

δ S [Φ]
δΦi(x)

〉
(6)

which is the DeWitt formula, connecting the quantum action with the classical one.
Making use of the formula for vacuum expectation value of an arbitrary operator [6] we
can rewrite (6) as

δ Γ [φ]
δϕi(x)

=: exp

{
i

~

∞∑

n=2

(− i~)n

n !
Tr Gi1 ···in

(x1 ···xn)

δn

δϕi1(x1) · · · δϕin(xn)

}
:

δ S [φ]
δϕi(x)

(7)

where Tr denotes the summation over repeated discrete indices and/or the integration
over repeated continuous arguments.

Equation (7) contains two unknown quantities: effective action Γ and Green fun-
ctions G. Therefore, we need another equation connecting them. For this end, let us take
derivative of (2) and (4) with respect to Jk and ϕj , respectively. We get

Tr
δ2 Γ [φ]

δϕi(x) δϕj(z)
δ 2W [J ]

δJj(z) δJk(y)
= −δik δ(x − y)
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or

Tr Gi j(x, z)
δ2 Γ [ϕ]

δϕj(z) δϕk(y)
= −δik δ(x− y) (8)

Now let us prove the formula for loop expansion of the effective action

Γ [ϕ] = S [ϕ] +
i

2
Tr ln Dik + Γ(2), (9)

in which D− 1
ik = δ2 S[Φ]

δΦi δΦk

∣∣∣
Φ=ϕ

and Γ(2) is the sum of all one-particle-irreducible (1PI)

vacuum graphs, in which internal lines represent the propagator Dik and vertices are
determined by the shifting Lagrangian L[Φ + ϕ].

The proof is carried out as follows. Assume the loop expansions for Γ and G have
the general form

Γ = Γ0 + ~ Γ1 + ~2 Γ2 + · · · (10)

G = G0 + ~ G1 + ~2 G2 + · · · (11)

Substituting (10) and (11) into (7) and (8), respectively, we receive successively

δΓ0

δϕi
=

δS

δϕi
(12)

δΓ1

δϕi(x)
= − i

2
Tr Gi1i2

0 (x1 , x2)
δ

δϕi(x)
δ 2S

δϕi1(x1)δϕi2(x2)
(13)

δΓ2
δϕi(x) =:

{
− i

2Tr Gi1i2
1 (x1, x2) δ 2

δϕi1 (x1)δϕi2 (x2)
−

1
3!Tr Gi1i2i3

0 (x1, x2, x3) δ 3

δϕi1(x1)δϕi2(x2)δϕi3(x3)

}
: δ S

δϕi(x)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(14)

and

Tr G
ij
0 (xi, xj)

δ2Γ0

δϕj(xj)δϕk(xk)
= −δikδ (xi − xk) (15)

Tr

{
Gij

1 (xi, xj)
δ2Γ0

δϕj(xj)δϕk(xk)
+ Gij

0 (xi, xj)
δ2Γ1

δϕj(xj)δϕk(xk)

}
= 0 (16)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Integrating (12) over ϕi gives immediately

Γ0 [ϕ] = S [ϕ] (17)

which together with (15) provides
G0, ik = Dik (18)

Inserting (18) into (13), we obtain

δΓ1

δϕi
=

i

2
Tr D− 1

j k

δDj k

δϕi
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which leads to
Γ1 [ϕ] =

i

2
Tr ln Dj k (19)

Next let us prove that Γ2 determined by (14) is the sum of two-loop vacuum graphs
with internal lines defined by Dik and vertices defined by S[Φ + ϕ].

Indeed, it is easily seen that Gik
1 and Gijk

0 can be expressed in terms of G0,ik(=Dik).
From (16) it follows that

Gik
1 = −Gij

0

δ2Γ1

δϕj δϕm
Gmk

0 (20)

On the other hand,

Gijk =
δ

δJi

δ2W

δJj δJk

∣∣∣∣
J=0

=
δ

δJi
Gjk

∣∣∣∣
J=0

= Gil Gjm Gkn δ3Γ
δϕlδϕmδϕn

(21)

Inserting (10) and (11) into (21) we get

G
ijk
0 = Gil

0 G
jm
0 Gkn

0

δ3Γ0

δϕl δϕmδϕn
(22)

Finally, substituting (20) and (22) into (14) we arrive at an expression containing only Dik,
which represents internal lines, and variational differentials of S[ϕ], which corresponds to
vertices.

The similiar discussion can be further applied, respectively, to Γ3, Γ4 and so on. We
completed the proof of (9).

As an illustration, let us apply the formula (9) to calculation of the effective action
for the linear sigma model in two-loop approximation.

The Lagrangian of this model reads

L =
1
2

[
(∂µσ)2 + (∂µ~π)2

]
− µ2

2
[
σ2 + ~π2

]
− λ2

4
[
σ2 + ~π2

]2 (23)

The positivity of the Hamiltonian corresponding to (23) demands that λ2 > 0. We shall
choose λ > 0.
Let v be the vacuum expectation value of σ: 〈σ〉 = v 6= 0 and 〈~π〉 = 0. The field σ is
shifted σ = s + v so that 〈s〉 = 0.
We shall now rewrite (23) in terms of s

L = La + Lb

La =
1
2

[
(∂µ~π)2 − µ2

π~π2
]

+
1
2

[
(∂µs)2 − µ2

σs2
]
− λ2vs

(
s2 + ~π2

)
− λ2

4
(
s2 + ~π2

)2
,

Lb = −vµ2
πs

(24)

We have dropped an inessential c-number constant in the expression given above. We
have also used the abbreviations

µ2
π = µ2 + λ2v2
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µ2
σ = µ2 + 3λ2v2

The propagators of free σ and π fields, corresponding to (24), are given respectively
by

Dik(p) =
1

p2 − µ2
π

δik ∆(p) =
1

p2 − µ2
σ

in momentum space.
It is known that for v = const, the effective action is reduced to the effective poten-

tial:

Γ [v] = −V [v]
∫

dx (25)

Then, taking into account (25), it follows from (9) that

V [v] =
µ2

2
v2 +

λ2

4
v4 +

i

2

∫
d4k

(2π)4
ln

(
k2 − µ2

π

)
+

i

2

∫
d4k

(2π)4
ln

(
k2 − µ2

σ

)
+ V2,

where V2 is the sum of all 1PI vacuum graphs, which are depicted in Fig. 1. in the two-loop
approximation,

Fig. 1. Two-loop vacuum graphs contribute to V2. The solid line corresponds to Dik,
the dotted line – ∆. The π4-vertex corresponds to −2iλ2 (δikδlm + δilδkm + δimδkl),
the σ4-vertex −6iλ2, the σ2π2-vertex −2iλ2δik, the σπ2-vertex −2iλ2vδik and the
σ3-vertex −6iλ2v.

V2 =
3
4
iλ2

[∫
d4p

p2 − µ2
σ

]2

+
27
4

iλ2

[∫
d4p

p2 − µ2
π

]2

+
9
2
iλ2

∫
d4p

p2 − µ2
π

∫
d4k

k2 − µ2
σ

+3λ4v2

∫
d4p

(2π)4

∫
d4q

(2π)4
1

p2 − µ2
π

· 1
q2 − µ2

π

· 1
(p + q)2 − µ2

σ

+3λ4v2

∫
d4p

(2π)4

∫
d4q

(2π)4
1

p2 − µ2
σ

· 1
q2 − µ2

σ

· 1
(p + q)2 − µ2

σ

.
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III. IN-MEDIUM EFFECTIVE ACTION

Now let us generalize the result obtained above to the system with non-vanishing
density of matter. For convenience, let us start from the nuclear matter, described by the
Walecka model, whose Lagrangian reads

L = −Ψ̄ [γµ∂µ + M ] Ψ − 1
2

[
∂µσ∂µσ + m2

s σ2
]
− 1

4FµνFµν

−1
2m2

v A2
µ + gs Ψ̄σΨ + igv Ψ̄ÂΨ

(26)

where Fµν = ∂µAν − ∂νAµ ; Ψ, σ and Aµ are the fields operators of nucleon, sigma and
vector mesons, respectively; gs and gv are coupling constants; M, ms and mv are physical
masses of nucleon and mesons, respectively; γµ satisfy

γµγν + γνγµ = δµν

A 4-vector is defined as Aµ = (Ak,A4) = (Ak,iA0), k = 1, 2, 3; a scalar product of 4-vectors
is AµBµ = AiBi + A4B4 = AiBi - A0B0 . Let ρ be the nuclear density, the in-medium
propagator of non-interacting nucleon is

S0(p) = (p̂− M)−1 + 2iπδ(p0 − Ek)θ(pF − | ~p |)(p̂ + M)/2E(p) (27)

in which
p3

F = NcNf 4ρ
/

(3π)2

E(p) =
(
~p2 + M2

)1/2

Then the generating functional for in-medium connecting Green functions is defined
as

eiWρ [η̄,η ,J,Jµ] = N
∫

DΨ̄DΨDσDAµ×
exp i

[∫
dx

[
L(ρ) + η̄Ψ + Ψ̄η + Jσ + JµAµ

]] (28)

where L(ρ) is the Lagrangian of system at density ρ, obtained by substituting (27) into
(26), i.e.

L(ρ) = Ψ̄
[
S−1

0 (x) + gsσ(x) + igvÂ
]
Ψ + meson part,

S0(x) is the Fourier transform of S0(p). (28) gives immediately the expectation values of
field operators in presence of external sources and at finite density,

δWρ

δ η̄(x)
= 〈Ψ(x)〉 ;

δWρ

δη(x)
=

〈
Ψ̄(x)

〉

δWρ

δJ(x)
= 〈σ(x)〉 = v;

δWρ

δJµ(x)
= 〈Aµ(x)〉 = ωµ

The effective action at density ρ is defined to be the Legendre transform of W :

Γρ

[〈
Ψ̄

〉
, 〈Ψ〉 , v, ωµ

]
= Wρ [η̄, η, J, Jµ] −

∫
dx

[
η̄ 〈Ψ〉 +

〈
Ψ̄

〉
η + J 〈σ〉+ Jµ 〈Aµ〉

]
(29)
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From (29) it follows that

δΓρ

δ
〈
Ψ̄(x)

〉 = −η(x);
δΓρ

δ 〈Ψ(x)〉
= −η̄(x)

δΓρ

δv(x)
= −J(x);

δΓρ

δωµ(x)
= −Jµ(x) (30)

The ground state is corresponding to (30) with vanishing external sources η̄ = η =
J = Jµ = 0. In this case it is clear that 〈Ψ〉 =

〈
Ψ̄

〉
= 0, v 6= 0 and ωµ = δ0µω, ω 6= 0.

Next let us establish formally the classical action at finite density in the presence of
external sources

SJ [ρ; Ψ̄, Ψ, σ, Aµ] = S[ρ; Ψ̄, Ψ, σ, Aµ] +
∫

dx
[
η̄Ψ + Ψ̄η + Jσ + JµAµ

]
,

S[ρ; Ψ̄, Ψ, σ, Aµ] =
∫

dxL(ρ)
(31)

It is easily seen that from δSJ = 0 we get

δS[ρ; Ψ̄, Ψ, σ, Aµ]
δF (x)

= −E (x), (32)

F =
{
Ψ̄, Ψ, σ, Aµ

}
, E = {η̄, η, J, Jµ} .

Confronting (32) with (30) we arrive at the DeWitt formula at density ρ:

δΓρ

δF̄ (x)
=

〈
δS [ρ; Ψ̄, Ψ, σ, Aµ]

δF (x)

〉
, (33)

F =
{
Ψ̄, Ψ, σ, Aµ

}
, F̄ =

{〈
Ψ̄

〉
, 〈Ψ〉 , 〈σ〉 , 〈Aµ〉

}
.

Basing on (33) we derive the loop expansion for in-medium effective action Γρ :

Γρ =S
[
ρ;

〈
Ψ̄

〉
, 〈Ψ〉 , 〈σ〉 , 〈Aµ〉

]
+

1
2
Tr lnC−1(x) +

1
2
Tr lnD−1

µν (x)

− Tr lnG−1(x; v, ωµ) + Γ2

(34)

where

C−1
0 (x) =

δ2S [ρ; Ψ̄, Ψ, σ, Aµ]
δσ (x)δσ (0)

, D−1
0µη(x) =

δ2S [ρ; Ψ̄, Ψ, σ, Aµ]
δAµ (x)δAν (0)

,

G−1
0 (x ; v , ωµ) =

δ2S [ρ; Ψ̄, Ψ, σ, Aµ]
δΨ̄ (x)δΨ(0)

∣∣∣∣ σ = v,
Aµ = δµηω

,

Γ2 is the sum of all 1PI vacuum graphs which, in two-loop approximation, are given in
Fig. 2.
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Fig. 2. Solid line represents the nucleon propagator G, wavy line-propagator of sigma
meson C and dotted line-propagator of vector meson Dµν .

Because v and ω are not dependent on space-time coordinates, the theory is invariant
with respect to translations. So, instead of (3.9) we can write the effective potential Vρ,

Γρ = −Vρ

∫
dx,

in momentum space,

Vρ[v , ω] = −m2
s

2
v2 − m2

v

2
ω2 +

1
2

∫
d4k

(2π)4
ln

(
k2 + m2

s

)

+
1
2

∫
d4k

(2π)4
ln

(
k2 + m2

v

)
+

1
2

∫
d4k

(2π)4
G(v)

+
i

2
g2
s

∫
d4p

(2π)4

∫
d4k

(2π)4
trG(p)G(k)C(p− k)

− i

2
g2
v

∫
d4p

(2π)4

∫
d4k

(2π)4
trγµG(p)γνG(k)Dµη(p− k). (35)

where
C0(k) = −

(
k2 + m2

s

)−1
,

D0,µη(k) = −
(
k2 + m2

v

)−1
(

δµη +
kµkν

m2
v

)
,

G0(k) = G0
F (k) + G0

D(k),

G0
F (k) =

[
−iγµk∗

µ + M∗] −1
k∗2 + M∗2

G0
D(k) =

[
−γµk∗

µ + M∗] πi

E∗(k)
δ (k∗

0 − E∗(k)) θ (k0)θ
(
kF −

∣∣∣~k
∣∣∣
)

,

and k∗
i = ki, k

∗
0 = k0 + gvω, M∗ = M − g0σ, E∗(k) =

(
~k∗2

+ M∗2
)1/2

.
The expression (35) for in-medium effective potential Vρ is useful for study of nuclear

matter.

IV. CONCLUSION AND DISCUSSION

In the preceeding sections we developed a new approach for loop expansion of the
effective action in vacuum and in medium. It would be noticed that this is Jackiw [3],
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who is the first to establish the formula (9) long ago, but his proof is too lengthy and
cumbersome. Basing on the well known formula of DeWitt we obtain (9) rather simply.
Generalizing to the in-medium case we get the in-medium DeWitt formula (33), which is
the starting point for receiving the loop expansion of the in-medium effective action (35).
These are our major results, which are very useful for the study of many non-perturbative
phenomena occurred in vacuum as well as in medium such as the spontaneuos breakdown
of symmetry in vacuum and in nuclear matter.
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