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Abstract. Superluminal electromagnetic fields of dyons are described in T 4- space and Quater-
nion formulation of various quantum equations is derived. It is shown that on passing from sub-
luminal to superluminal realm via quaternion the theory of dyons becomes the Tachyonic dyons.
Corresponding field Equations of Tachyonic dyons are derived in consistent, compact and simpler
form.

I. INTRODUCTION

The question of existence of monopoles (dyons) [1, 2, 3] has become a challenging new
frontier and the object of more interest in connection with the current grand unified
theories [4, 5], quark confinement problem of quantum chromo dynamics [6], the possi-
ble magnetic condensation of vacuum [7], their role as catalyst in proton decay [8] and
supersymmetry [9, 10]. The eight decades of twentieth century witnessed a rapid devel-
opment of the group theory and gauge field theory to establish the theoretical existence
of monopoles and to explain their group properties and symmetries. Keeping in mind
t’ Hooft-Polyakov and Julia-Zee solutions [11, 12] and the fact that despite the poten-
tial importance of monopoles, the formalism necessary to describe them has been clumsy
and not manifestly covariant, a self consistent quantum field theory of generalized elec-
tromagnetic fields associated with dyons (particle carrying electric and magnetic charges)
of various spins has been developed [13, 14] by introducing two four potentials [15] and
avoiding string variables [16] with the assumption of the generalized charge, generalized
four-potential, generalized field tensor, generalized vector field and generalized four-current
density associated with dyons as complex quantities with their real and imaginary parts as
electric and magnetic constituents. On the other hand, there has been continuing interest
[17, 18, 19, 20] in higher dimensional kinematical models for proper and unified theory of
subluminal (bradyon) and superluminal (tachyon) objects [21, 22]. The problem of rep-
resentation and localizations of superluminal particles has been solved only by the use of
higher dimensional space [23, 24, 25] and it has been claimed that the localization space
for tachyons is T 4- space with one space and three times while that for bradyon is R4-
space in view of localizability and of these particles.
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Introducing the concepts of superluminal Lorentz transformations, need of higher di-
mensional space-time, localizability of bradyons and tachyons, in the present paper, we
have under taken the study of generalized fields of dyons under superluminal Lorentz
transformations (SLTs). It has been shown that the generalized electromagnetic fields
behave in frame K ′ (i.e. the superluminal frame) as subluminal fields do in frame K
(subluminal frame). As such, the generalized fields, when viewed upon by an observer
in bradyonic frame, appear as superluminal fields and thus, satisfy the field equations
different from Maxwell’s equations used for electric charge ( or magnetic monopole) and
generalized Dirac-Maxwell’s (GDM) equations of dyons. Hence, it is concluded that the
superluminal electromagnetic fields are not same as the familiar electric and magnetic
fields associated with electric charge (or magnetic monopole) and dyons of our every day
experience. It is shown that the superluminal electromagnetic fields and field equations
are no more invariant under SLTs with the chronological mapping of space-time on passing
from subluminal to superluminal realm. It is has been emphasized that in order to re-
tain the Lorentz invariance of field equations, we are forced to include extra negative sign
to the components of four-current densities for electric charge (or magnetic monopole)
and dyons respectively. It is also concluded that though the roles of electric and mag-
netic charges are not changed while passing from subluminal to superluminal realm under
SLTs, a dyon interacting with superluminal electromagnetic fields behaves neither as elec-
tric charge, nor as pure magnetic monopole but having the mixed behaviour of electric
and magnetic charges, rather, namely a tachyonic dyon. Describing the need of higher di-
mensional and localizability spaces for bradyons and tachyons respectively as R4−and T 4−

spaces, we have obtained superluminal electromagnetic fields in T 4−spaces and derived
the consistent and manifestly covariant field equations and equation of motion where the
velocity is described as reversed velocity. Starting with the quaternionic form of general-
ized four-potential of dyons, we have developed the simple and compact quaternionic form
of Maxwell’s equations and it has been shown that while passing from usual four space
to quaternionic formulation the signature of four-vector is changed from (+,−,−,−) to
(−,−,−,+). Hence, the quaternionic formulation and superluminal behaviour have strik-
ing similarities. The corresponding quaternionic field equations of bradyonic and tachyonic
dyons are derived consistently in R4− and T 4− spaces respectively in consistent, simple
and compact formulations. These quaternionic formulations reproduce the theories of elec-
tric (magnetic) charge in the absence of magnetic (electric) charge or vice versa on dyons
in R4−and T 4− spaces.

II. FIELD ASSOCIATED WITH DYONS

Let us define the generalized charge on dyons as [13, 14]

q = e− ig (i =
√
−1) (1)

where e and g are respectively electric and magnetic charges. Generalized four - potential
{Vµ} = {φ,−→V }associated with dyons is defined as,

Vµ = Aµ − iBµ (2)
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where {Aµ} = {φe,
−→
A} and {Bµ} = {φg,

−→
B } are respectively electric and magnetic four -

potentials. We have used throughout the natural units c = ~ = 1 and Minikowski space
id described with the signature (−,+,+,+). Generalized electric and magnetic fields of
dyons are defined in terms of components of electric and magnetic potentials as,

−→
E = −∂

−→
A

∂t
− −→∇φe −

−→∇ ×−→A,

−→
H = −∂

−→
B

∂t
− −→∇φg +

−→∇ ×−→B. (3)

These electric and magnetic fields of dyons are invariant under generalized duality trans-
formation i.e.

Aµ −→ Aµ cos θ + Bµ sin θ
Bµ −→ Aµ sin θ + Bµ cos θ. (4)

The expression of generalized electric and magnetic field given by equation (3) are sym-
metrical and both the electric and magnetic field of dyons may be written in terms of
longitudinal and transverse components. The generalized field vector

−→
ψ associated with

dyons is defined as
−→
ψ =

−→
E − i−→H (5)

and accordingly, we get the following differential form of generalized Maxwell’s equations
for dyons i.e.

−→∇ .−→ψ = J0,

−→∇ ×
−→
ψ = −i−→J − i∂

−→
ψ

∂t
(6)

where J0 and
−→
J , are the generalized charge and current source densities of dyons, given

by

Jµ = jµ − ikµ ≡ {J0,
−→
J }. (7)

Substituting relation (3) into equation (5) and using equation (2), we obtain the following
relation between generalized field vector and generalized potential of dyons i.e.

−→
ψ = −−→∇φ− ∂

−→
V

∂t
− i−→∇ × −→V . (8)

In equation (8) , {jµ} = (ρe,
−→
j ) and {kµ} = (ρg,

−→
k ) are electric and magnetic four

current densities. Thus we write the following tensor forms of generalized Maxwell’s -
Dirac equations of dyons [13, 14] i.e.

Fµν,ν = jµ

F̃µν,ν = kµ (9)

where



30 P. S. BISHT, JIVAN SINGH AND O. P. S. NEGI

Fµν = Eµν − H̃µν ,

F̃µν = Hµν + Ẽµν (10)

with

Eµν = ∂νAµ − ∂µAν ,

Hµν = ∂νBµ − ∂µBν ,

Ẽµν =
1
2
εµνρλE

ρλ,

H̃µν =
1
2
εµνρλH

ρλ. (11)

The tidle (∼) denotes the dual part while εµνρλ are four index Levi - Civita symbol.
Generalized fields of dyons given by equations (3) may directly be obtained from field
tensors Fµν and F d

µν as,

F0i = Ei,

Fij = εijkH
k,

Hd
0i = −H i,

Hd
ij = −εijkEk. (12)

Taking the curl of second equation of (6) and using first equation of (6), we obtain a
new vector parameter

−→
S (say) i.e.

−→
S = �

−→
ψ = −∂

−→
ψ

∂t
− i
−→
∇ ×

−→
J −

−→
∇ρ (13)

where � represents the D’Alembertian operator i.e.

� = ∇2 − ∂2

∂t2
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− ∂2

∂t2
. (14)

Defining generalized field tensor as

Gµν = Fµν − i F̃µν (15)

one can directly obtain the following generalized field equation of dyons i.e.

Gµν,ν = Jµ,

G̃µν,ν = 0 (16)

where Gµν = Vµ,ν − Vν,µ is called the generalized electromagnetic field tensor of dyons.
Equation (16) may also be written as follows like second order Klein-Gordon equation for
dyonic fields

�Vµ = Jµ (in Lorentz gauge) (17)

Equations ( 9) and (16) are also invariant under duality transformations;

(F, F d) −→ (F cos θ + F d sin θ, F sin θ − F d cos θ), (18)
(jµ, kµ) −→ (jµ cos θ + kµ sin θ, jµ sin θ − kµ cos θ) (19)
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where
g

e
=

Bµ

Aµ
=
kµ

jµ
= − tan θ = constant. (20)

Consequently the generalized charge of dyons may be written as

q = |q|e−iθ. (21)

The suitable Lagrangian density, which yields the field equation (16) under the variation
of field parameters i.e. potential only without changing the trajectory of particle, may be
written as follows;

L = −m0 −
1
4
GµνG

?
µν + V ?

µ Jµ (22)

where m0 is the rest mass of the particle and (?) denotes the complex conjugate. La-
grangian density given by equation (22) directly follows the following form of Lorentz
force equation of motion for dyons i.e.

fµ = m0ẍµ = Re (q?Gµν)uν (23)

where Re denotes real part, {ẍµ} is the four - acceleration and {uν} is the four - velocity
of the particle.

III. DYONIC FIELD EQUATIONS UNDER SUPERLUMINAL LORENTZ
TRANSFORMATION

Special theory of relativity has been extended in a straight forward manner to superlu-
minal inertial frames and it has been shown that the existence of tachyons (particles moves
faster than light) does not violate the theory of relativity while their detection may require
a modification in certain established motion of causality. In deriving Superluminal Lorentz
transformation with relative velocity between two frames greater than velocity of light,
two main approaches are adopted by different authors. In the first one adopted by Recami
et al [26], the components of a four vector field in the direction perpendicular to relative
motion become imaginary on passing from subluminal to superluminal realm while in the
second approach followed by Antippa-Everett [27] the real superluminal Lorentz transfor-
mation are used. In the light of Gorini’s theorem [28] and the conclusion and Pahor and
Strnad [29], that with the real transformations either the speed of light is not invariant or
relative velocity between the frames does not have a meaning, the superluminal Lorentz
transformation of Racami et al [26] are closer to the spirit of relativity in comparison to
the real ones . In order to examine the invariance of generalized Maxwell’s equations of
dyons under imaginary superluminal Lorentz transformations [26], let us introduce two
inertial frames K and K ′ whose axes are parallel and whose origins coincide at t = t ′ = 0.
Let K ′ moves with respect to K with a superluminal velocity v > 1 directed along Z -
axis, the transformation equations between the coordinates of an event as seen in K ′ and
those of the same event in K, may be written as follows [26],

x′j = ±ixj , (j = 1, 2)

x′3 = ±γ(x3 − vt), (v > 1)
t′ = ±γ(t− xv3) (24)
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where

γ = (v2 − 1)−
1
2 . (25)

From these transformations we have

−(t′)2 + (x′)21 + (x′)22 + (x′)33 = t2 − x2
1 − x2

2 − x2
3 (26)

which shows that the reference metric (−1,+1,+1,+1) in frame K is transformed to the
metric (1,−1,−1,−1)in frame K ′ with the transformations (24) and the roles of space and
time get interchanged for superluminal transformations. In other words, the superluminal
transformations lead to chronological mapping [23, 24, 26, 30, 17],

(3, 1) ←→ (1, 3) (27)

for the components of space and time on passing from subluminal to superluminal realm
or vice versa and thus describes

(x, y, z, t) → (t′, ix′, iy′, iz′) (28)

from which we get

� = −�′ (29)

and the mapping

(
−→∇, i ∂

∂t
) → (

∂

∂t′
, i
−→∇). (30)

Similar superluminal transformations may be derived for the components of four potentials
(electric, monopole, dyon) and we may obtain that

|A′
µ|2 = −|Aµ|2,

|B′
µ|2 = −|Bµ|2,
|V ′

µ|2 = −|Vµ|2 (31)

with the correspondence (3, 1)←→ (1, 3) mapping we get

(A1, A2, A3, iφe) → (φ′e, A
′
1, A

′
2, A

′
3),

(B1, B2, B3, iφg) → (φ′g, B
′
1, B

′
2, B

′
3),

(V1, V2, V3, iφ) → (φ′, V ′
1, V

′
2, V

′
3). (32)

Using relation (26-32) and the similar mapping for the component four current densities
(electric, monopole, dyon) we may transform the Maxwell’s equation given by equation
(17) in frame K to the following equation in frame K ′ i.e.;

�′A′
µ = −j ′µ,

�′B′
µ = −k′µ,

�′V ′
µ = −J ′

µ, (33)

which are the equations according to which the superluminal electromagnetic fields asso-
ciated respectively with electric charge , magnetic monopole and dyon are coupled to their
tachyonic counterparts which may be considered as bradyons in superluminal frame K ′ in
view of tachyon-bradyon reciprocity and, therefore, these electromagnetic fields behave in
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frame K ′ as the subluminal fields do in frame K. These fields, when viewed upon by an
observer in frame K (Bradyonic frame), appear as superluminal electromagnetic fields and
satisfy the field equations (33), which differs from the usual filed equations respectively
for electric charge, magnetic monopole and dyon. As such, it may be concluded that the
superluminal electromagnetic fields are not the same as the familiar electric and magnetic
fields of electric charge, magnetic monopole and dyons of our daily experience and obey
Maxwell type equations in subluminal frame of reference. Consequently the field equa-
tions are no more invariant under imaginary superluminal transformations and to retain
the Lorentz invariance of field equations we are forced to include extra negative sign to
the components of four current densities for electric charge, magnetic monopole and dyon
respectively with incorporating the following mappings;

(j1, j2, j3, iρe) → −(ρ′e, j
′
1, j

′
2, j

′
3),

(k1, k2, k3, iρg) → −(ρ′g, k
′
1, k

′
2, k

′
3),

(J1, J2, J3, iρ) → −(ρ′, J ′
1, J

′
2, J

′
3). (34)

Despite the change in sign, the real and imaginary components of four current densities
lead to corresponding real and imaginary components of the four potentials. The change in
sign of charge and current densities leaves the total charge invariant as the volume element
also changes the sign under imaginary superluminal Lorentz transformations. This change
of sign in the components of four current densities may lead to the conclusion that the
filed equations may be treated as invariant on passing from subluminal to superluminal
realm or vice versa [31]. If we use the mappings given by equations (27,28,30 and 32) the
generalized electric and magnetic fields of dyons for superluminal case take the following
expressions for generalized superluminal electromagnetic fields;

−→
E ′ = −grad′φ′e −

∂
−→
A ′

∂t′
− ∂

∂t′
φ′gn̂g,

−→
H ′ = −grad′φ′g −

∂
−→
B ′

∂t′
− ∂

∂t′
φ′en̂e (35)

where n̂e and n̂g are unit vectors in the direction of electric and magnetic fields associated
with electric and magnetic charges. These equations are different from those obtained
earlier by Negi-Rajput [23] derived for electric charge only. These are also not exactly
same as given by equations (3) for generalized subluminal electric and magnetic fields
of dyons but shows the striking symmetry between the electric and magnetic fields of
dyons under superluminal transformations and may thus be visualized as the generalized
superluminal electromagnetic field of dyons in frame K ′ when viewed from subluminal
frame K. As such, it may be concluded that though the roles of electric and magnetic
charges are not changed while passing from subluminal to superluminal realm under the
superluminal transformations, a dyon interacting with superluminal electromagnetic fields
containing symmetrical electromagnetic fields behaves neither as electric charge nor as pure
magnetic monopole [32, 33] but with mixed behaviors of electric and magnetic charges
rather namely a tachyonic dyon. As such we agree with Negi-Rajput [23] that even in the
case of a dyon interacting with generalized superluminal electromagnetic fields, a tachyonic
electric charge can not behave as a bradyonic magnetic monopole or vice versa. Neither
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it behaves exactly as dyons interacting with superluminal fields as the components of
electric and magnetic potential get mixed in different manner for generalized superluminal
electromagnetic fields. We do not have any alternative left but to say that it is a kind
tachyonic dyon interacting with inconsistent natures of superluminal electromagnetic fields
where rotational (curlof vector potentials) counter parts of electric and magnetic field do
not occur. Transforming the force equation of a dyon in frame K i.e.

−→
F = e(

−→
E + −→v × −→H) + g(

−→
H −−→v ×−→E ), (36)

we get the following equation of force in frame K ′i.e.,

−→
F ′ = e(

−→
E ′ + −→v ′ ×−→H ′) + g(

−→
H ′ −−→v ′ ×

−→
E ′), (37)

under the mapping of fore said superluminal transformations in the case of electric charge
[23] where the velocity becomes the inverse velocity −→v ′ =←−ω = dt

dz . Equations (35) for su-
perluminal electromagnetic fields derived by using transformations (24) and corresponding
mappings are not consistent and do not describe the isotropic components of electric and
magnetic field vectors in all directions. On the other hand, the components of a position
four - vector become imaginary in the direction perpendicular to relative motion between
frame K and K ′. Similarly the perpendicular components of four - potential, four - force,
four - current and electromagnetic fields become imaginary on passing from sub to super-
luminal realm via these transformations. A lot of literature is also available [17, 34, 35]
for the justification of imaginary superluminal transformations. Despite of justifications,
it is concluded that when we are prepared to consider the tachyonic objects , we must give
up the idea that dynamical quantities or variables in classical mechanics are always real.

To over come the various problems associated with both type of superluminal Lorentz
transformations, six - dimensional formalism [36, 37, 38, 39, 40] of space - time is adopted
with the symmetric structure of space and time having three space and three time com-
ponents of a six dimensional space time vector. The resulting space for bradyons and
tachyons is identified as the R6- or M(3, 3) space where both space and time and hence
energy and momentum are considered as vector quantities. Superluminal Lorentz trans-
formations (SLTs) between two frames K and K ′ moving with velocity v > 1 are defined
in R6- or M(3, 3) space as follows;

x ′ = ±tx,
y ′ = ±ty ,
z ′ = ±γ(z − vt),
tx

′ = ±x,
ty

′ = ±y,
tz

′ = ±γ(t− vz). (38)

These transformations lead to the mixing of space and time coordinates for transcendental
tachyonic objects, (|−→v | → ∞ or −→ω → 0) where equation (38) takes the following form;
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+ dtx → dtx′ = dx +
+ dty → dty′ = dy +
+ dtz → dtz′ = dz +
− dz → dz ′ = dtx −
− dy → dy ′ = dty −
− dx → dy ′ = dtz − . (39)

It shows that we have only two four dimensional slices of R6- orM (3, 3) space (+,+.+,−)
and (−,−,−,+). When any reference frame describes bradyonic objects it is necessary to
describe

M(1, 3) = [t, x, y, z]. (R4 − space)

So that the coordinates tx and ty are not observed or couple together giving t = (t2x +
t2y + t2z)

1
2 . On the other hand when a frame describes bradyonic object in frame K, it will

describe a tachyonic object (with velocity (|−→v | → ∞ or −→ω → 0) in K ′ with M ′(1, 3) space
i.e.

M ′(1, 3) = [tz′ , x′, y′, z′] = [z, tx, ty, tz ]. (T 4 − space)

We define M ′(1, 3) space as T 4- space or M(3, 1) space where x and y are not observed or
coupled together giving rise to r = (x2 +y2 +z)2

1
2 . As such, the spaces R4 and T 4 are two

observational slices of R6- or M(3, 3) space but unfortunately the space is not consistent
with special theory of relativity. Subluminal and superluminal Lorentz transformations
loose their meaning in R6- or M(3, 3) space with the sense that these transformations do
not represent either the bradyonic or tachyonic objects in this space. It has been shown
earlier [23, 24, 25] that the true localizations space for bradyons is R4 - space while that
for tachyons is T 4 - space. So a bradyonic R4 = M(1, 3) space now maps to a tachyonic
T 4 = M ′(3, 1) space or vice versa.

R4 = M(1, 3) SLT→ M ′(3, 1) = T 4. (40)

In a similar manner the corresponding mapping for the components of electromagnetic
potential in six - dimensional space may be written as

(
−→
V , iφ) → (

−→
φ , iV ) (41)

where

φ = |
−→
φ | = (φ2

x + φ2
y + φ2

z)
1
2

V = |−→V | = (V 2
x + V 2

y + V 2
z )

1
2 .

The generalized four potential {φµ} = {
−→
φ , iV } associated with tachyonic dyon defined as

{φµ} = {φe
µ} − i{φm

µ } (42)

where
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{φe
µ} = {

−→
φe, iA},

{φm
µ } = {

−→
φm, iB} (43)

are the four - potentials associated with superluminal electric and magnetic charges re-
spectively with

φe = |
−→
φe| = (φe2

x + φe2
y + φe2

z )
1
2 ,

A = |−→A | = (A2
x +A2

y +A2
z)

1
2 ,

φm = |
−→
φm| = (φm2

x + φm2
y + φm2

z )
1
2 ,

B = |−→B | = (B2
x +B2

y + B2
z )

1
2 . (44)

Then the superluminal electric and magnetic fields of dyons in this formalism will be
described as

−→
E T = −−→∇tA−

∂
−→
φe

∂r
−−→∇t ×

−→
φm,

−→
HT = −−→∇tB −

∂
−→
φm

∂r
+
−→∇t ×

−→
φe. (45)

The vector wave function
−→
ψT associated with generalized electromagnetic fields in super-

luminal transformation is defined as
−→
ψT =

−→
ET − i

−→
HT . (46)

Then we get the following pair of generalized Maxwell’s equation for generalized fields of
dyons in T 4- space (for tachyonic dyons via superluminal transformation) i.e.

−→∇t.
−→
ψT = =0

−→∇t ×
−→
ψT = −i

−→
= − i∂

−→
ψT

∂r
(47)

where =0 and
−→= are the components of generalized four - current source densities of dyons

in T 4 - space , given by

{ρµ} = {ρe
µ} − i{ρm

µ } = {=0,
−→=}. (48)

Substituting relation (45) into equation (46) as we have done earlier and using equation
(44), we obtain the following expression for generalized vector field in terms of the com-
ponents of generalized four potential of dyon in T 4 - space i.e.

−→
ψT = −∂

−→
φ

∂r
− −→∇tV − i

−→∇t ×
−→
φ . (49)

As such, we can write the following tensorial forms of generalized Maxwell’s - Dirac equa-
tions of dyons under the influence of superluminal transformation (in T 4- space) i.e.

fµν,ν = ρe
µ,

f̃µν,ν = ρm
µ (50)
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where fµν and f̃µν are described (like equations (10)) as superluminal electric and magnetic
fields tensors in T 4 - space giving rise to Maxwell’s equations coupled to electric and
magnetic four currents in T 4- space.With the help of equation (47) we may obtain a new
vector parameter (current)

−→
ST , in T 4- space i.e.

−→
ST = �t

−→
ψT =

∂
−→=
∂r
− −→∇t=0 − i

−→∇t ×
−→
= (51)

where

�t = ∂2
r − ∇2

t =
∂

∂r2
− ∂

∂t2x
− ∂

∂t2y
− ∂

∂t2z
. (52)

We may also define the generalized field tensor for tachyonic dyons associated with gen-
eralized superluminal electromagnetic fields in T 4- space as

gµν = fµν − i f̃µν . (53)

It gives directly the following form of field equation (parallel to Maxwell’s equations asso-
ciated with generalized superluminal electromagnetic fields of dyons) in T 4- space i.e.

gµν,ν = ρµ,

g̃µν,ν = 0 (54)

where gµν = φµ,ν − φν,µ is denoted as the generalized electromagnetic field tensor and
ρµ = ρe

µ − iρm
µ is described as the generalized four current associated with superluminal

electromagnetic fields of dyons in T 4- space. Equation (54) may also be written as follows
( like second order Klein-Gordon equation), for dyonic fields in T 4- space, i.e.

�tφµ = ρµ (in Lorentz gauge). (55)

Lorentz gauge condition and continuity equation in T 4- space are written as
∂V

∂r
+
−→∇t.
−→
φ = 0 (Lorentz gauge condition) (56)

∂J

∂r
+
−→∇t.
−→ρ = 0 (Continuity equation). (57)

The suitable manifestly covariant Lagrangian density, which yields the field equation (40)
under the variation of field parameters i.e. potential only without changing the trajectory
of particle, may be written as follows in T 4- space;

LT = −m0 −
1
4
gµνg

?
µν + φ?

µρµ (58)

where m0 is the rest mass of the particle, (?) denotes the complex conjugate and

g̃µν =
1
2
εµνρσg

ρσ. (59)

Lagrangian density given by equation (58) directly yields the following Lorentz force equa-
tion of dyons under superluminal transformations i.e.

ζµ = m0
¨xµ = Re(q ∗ gµν)uν (60)

where q is the generalized charge of dyon, Re denotes real part, ẍµ is the four acceleration
and uν is the inverse velocity of the particle in T 4- space and is given by,
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uν =
dtν

dz
or

←−u = (
dtx
dz
,
dty
dz
,
dtz
dz

). (61)

Equation (60) describes the following form of Lorentz force for dyons interacting with
superluminal electromagnetic fields in T 4- space,

−→
ζ = e(

−→
ET +←−u × −→HT ) + g(

−→
HT −←−u ×

−→
ET ). (62)

IV. QUATERNIONIC FORMULATION OF DYONS IN T 4- SPACE

A quaternion q is defined as

q = q0 + q1e1 + q2e2 + q3e3 (63)

where qα(α = 0, 1, 2, 3) are real or complex numbers with three imaginary units e1, e2and
e3 satisfy the relations,

eiej = −δij + εijkek . (64)

All laws of algebra with the exception of commutative law of multiplication are satisfied by
quaternions, which form a division ring. The set of quaternions is called a 4 - dimensional
real space essentially because 4- real numbers are required to specify a quaternion. The
complex conjugate of q i.e. q? is defined by

q? = q0 + q?
1e1 + q?

2e2 + q?
3e3 (65)

and the quaternion conjugate of q by

q = q0 − q1e1 − q2e2 − q3e3 (66)

which gives

(qp)? = q?p?

(qp) = p q (67)

where p and q , are also the quaternions showing that the quaternion conjugate of product
of two quaternions is the product of conjugates in reverse order.

The scalar product of a two quaternions is defined as

(p, q) =
1
2
(pq + qp)

and the norm of a quaternion is given as

|p| = (p.p) = p2
0 + p2

1 + p2
2 + p2

3. (68)

The inverse of a quaternion qis also a quaternion and given by

q−1 =
q

|q|2
. (69)

As such, it is easy to write a four vector in T 4- space as a quaternion. Adopting the
same procedure to write the quantum equation in quaternion formalism, (as we have done
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earlier [41, 42]), the generalized four-potential and generalized four - current associated
with dyons under superluminal Lorentz transformation (T 4 -space) may be written as
quaternions i.e.

φ = −iV + e1φ1 + e2φ2 + e3φ3 (70)
ρ = −iJ + e1ρ1 + e2ρ2 + e3ρ3. (71)

In this case quaternionic differential operator is written as

�t = −i∂r + e1∂1 + e2∂2 + e3∂3 (72)

where

∂r =
∂

∂r
, ∂1 = ∂

∂tx
, ∂2 =

∂

∂ty
, ∂3 =

∂

∂tz
. (73)

Operating equation (72) on equations (70) and (71) and using equations (49) ,(56) and
(57), we get;

�tφ = −(∂rV + ∂1φ1 + ∂2φ2 + ∂3φ3)
−i e1 {−∂rφ1 − ∂1V − i(∂2φ3 − ∂3φ2)}
−i e2 {−∂rφ2 − ∂2V − i(∂3φ1 − ∂1φ3)}
−i e3 {−∂rφ3 − ∂3V − i(∂1φ2 − ∂2φ1)}
= −ψr −i(e1ψ1 + e2ψ2 + e3ψ3) (74)

and

�tρ = −(∂rJ + ∂1ρ1 + ∂2ρ2 + ∂3ρ3)
−i e1 {−∂rρ1 − ∂1J − i(∂2ρ3 − ∂3ρ2)}
−i e2 {−∂rρ2 − ∂2J − i(∂3ρ1 − ∂1ρ3)}
−i e3 {−∂rρ3 − ∂3J − i(∂1ρ2 − ∂2ρ1)}
= −Sr −i(e1S1 + e2S2 + e3S3) (75)

where

ψr = ∂rV + ∂1φ1 + ∂2φ2 + ∂3φ3 = 0 (Lorentz Gauge condition) (76)

Sr = ∂rJ + ∂1ρ1 + ∂2ρ2 + ∂3ρ3 = 0. (Continuity equation) (77)

We may then write equations (74) and (75) in the following quaternionic forms;

�tφ = ψT (78)

and

�tρ = ST . (79)

These are the quaternionic differential equations for generalized potential and generalized
current in T 4- space under superluminal Lorentz transformations. The conjugate repre-
sentation of quaternion field equations (78) and (79) in T 4 - space under superluminal
Lorentz transformations may then be expressed as,
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�t φ = ψT (80)
�t ρ = ST (81)

where �t, φ, ρ, ψT and ST are the quaternion conjugate and defined as,

�t = −i∂r − (e1∂1 + e2∂2 + e3∂3) (82)
φ = −iV − (e1φ1 + e2φ2 + e3φ3) (83)
ρ = −iJ − (e1ρ1 + e2ρ2 + e3ρ3) (84)

ψT = −ψr + i(e1ψ1 + e2ψ2 + e3ψ3) (85)

ST = −Sr − i(e1S1 + e2S2 + e3S3). (86)

Similarly, we may derive the following quaternionic forms of other fields of dyons in T 4 -
space under superluminal Lorentz transformation given by equations (51), (55) (56) and
(57) as

�t �t ψT = −ST (87)
�t �t φ = −ρ (88)
[�t, g] = ρ (89)
q[v, g] = f (90)

where

v = −iv0e0 + e1v1 + e2v2 + e3v3,

g = −ig0e0 + e1g1 + e2g2 + e3g3,

f = −if0e0 + e1f1 + e2f2 + e3f3. (91)

In equation (90) v, g and f are respectively the quaternionic forms of inverse velocity,
generalized field tensor and Lorentz force associated with dyons in T 4- space under super-
luminal Lorentz transformations.

As such, the tensorial forms of generalized field equations (89) and (90) are analogous
to the following quaternionic forms;

[�t, gµ] = ρµ (µ = 0, 1, 2, 3) (92)

and

q[v, gµ] = fµ (93)

where ρµ and fµ are the four - current and four - force associated with generalized fields of
dyons in T 4- space superluminal Lorentz transformation. The norms of quaternions �t, φ
and ρ may then be obtained as

�2
t =

1
2
[�t,�t] = �t�t = −∂2

r + |∇t|2 = −�t = − |�|2 ; (94)

φ2 = =
1
2
[φ, φ] = φφ = −V 2 + |φ|2 = −|φ|2; (95)

ρ2 = =
1
2
[ρ, ρ] = ρρ = −J2 + |ρ|2 = −|ρ|2 (96)
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where �t, φand ρ are Hamiltonian conjugate of �t, φ and ρ respectively. We may thus see
that under the influence of quaternions the norm of four vectors is changed like the norms
of four vectors do under imaginary superluminal transformations. The same conclusion
may be drawn for the generalized form of Maxwell’s equations for dyon on passing from
subluminal and superluminal electromagnetic fields. It may therefore be concluded that
the quaternionic forms of field equation may be regarded as the Maxwell’s equations
under the influence of imaginary superluminal transformations, which lead to the mapping
(3, 1)←→ (1, 3) of space-time.

As such, from the fore going analysis we may again draw the same conclusion, also for
the theory of generalized fields of dyons , as it has already be drawn [41] that the complex
quantum mechanics for time-like particles (bradyons) in subluminal frame of reference re-
duces to quaternion quantum mechanics for space-like particles (tachyons) in superluminal
frame of reference or vice versa. The advantage in expressing the field equations in quater-
nionic form is that one may extend the theory of bradyons (the Cauchy data at t = 0)
to the theory of tachyons (the Cauchy data at r = 0) directly in this formalism [43] and
accordingly the space-time duality and space-time reciprocity be tackled between complex
and quaternion quantum mechanics [44]. Finally, it may be pointed out that relativistic
equations in quaternionic form will describe the theory of both bradyons tachyons only
when making the use of complex (bi) quaternions. The quaternionic formalism described
here is thus compact, simpler, unique and consistent. It is also manifestly covariant under
quaternion Lorentz transformations.
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