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Abstract. The patterns of high temperature symmetry non-restoration (SNR) and inverse sym-
metry braking (ISB) in the Z2 × Z2 model are investigated in detail for a specified parameters.

I. INTRODUCTION

At present it is well known that all physical systems can be classified into several
categories:

a): The first one corresponds to those, in which the symmetry broken at T = 0
is restored at high temperature [1-3]. In addition, there is another alternative
phenomenon, the behavior of which associates with more broken symmetry as
temperature is increased. This is the so-called inverse symmetry breaking (ISB).
Here high temperature means that T/M >> 1 for mass scale M of the system in
question.

b): The second category deals with those cases which exhibit symmetry non-restoration
(SNR) at high temperature. This phenomenon emerges in a lot of systems and
materials [4]. In the context of quantum field theory, the high temperature SNR
has been considered in [5-9] and recently developed in many papers in connection
with various important cosmological applications [10-22].

In this respect, there remains growing interest on studying in [23], basing on the
CJT effective action at finite temperature [24], we considered the Z2 × Z2 model, which
was used in [10, 17] for the domain wall problem and in other Refs. [25, 26]. This
paper concerns a detailed investigation of phase transitions, which correspond to high
temperature SNR/ISB of the Z2 × Z2 model for a specified set of the model parameters.
In Section II, the main results of [23] are resumed. Section III is devoted for phase
transition study. The conclusion and discussion are given in Section IV.
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II. CONDITIONS FOR SNR/ISB

Let us start from the system described by the simple Lagrangian
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The counter-terms are chosen as
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The boundedness of the potential appearing in (1) requires

λ1 > 0, λ2 > 0 and λ1λ2 > 9λ2. (2)

Shifting {φ, ψ}→ {φ+ φ0, ψ+ ψ0} leads to the interaction Lagrangian
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and the tree-level propagators
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Next the expressions for the renormalized CJT effective potential V CJT
β [φ0, ψ0, D,G] and

the gap equations at finite temperature are derived
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Considering high temperature SNR/ISB let us assume that µ2
1 < 0 and µ2

2 > 0. As
a consequence,

φ0 6= 0 and ψ0 = 0,

which means that at T = 0 symmetry of the system is spontaneously broken in φ sector
and unbroken in ψ sector.

It is easily obtained from (5) that the parameters are constrained by

λ1 > 0, λ2 > 0, µ2
1 < 0, µ2

2 > 0,
λ1λ2 > 9λ2, λ < 0, |λ| > λ1, λ2, (6)

for the present model, in which both SNR/ISB simultaneously take place at high temper-
atures in corresponding sector.

It was proved [23] that the constraints (6) for there being SNR/ISB is very stable in
a large temperature interval due to the T logarithmic dependence of coupling constants.

III. PHASE TRANSITION PATTERNS FOR SPECIFIED VALUES OF
PARAMETERS

In order to gain an insight into the model it is very interesting to consider the phase
transitions for specified values of the model parameters. As is easily seen, there is no value
of λ which fulfils both conditions

λ1λ2 > 9λ2, |λ| > λ1,λ2.
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Fig. 1. The T dependence of M1, corresponding to the region that the broken
symmetry in φ-sector is restored (see Fig. 3). The phase transition happens in the
interval [T1, Tc1].

In this respect, let us proceed to the phase transitions study for the case, in which
broken symmetry gets restored in φ sector and ISB takes place in ψ sector. Accordingly,
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Fig. 2. The T dependence of M2, corresponding to the region that the symmetry
in ψ-sector is broken (see Fig. 5). The phase transition happens in the interval
[Tc2, T2].

the parameters are constrained as follows.

λ1 > 0, λ2 > 0, µ2
1 < 0, µ2

2 > 0,
λ < 0, λ1 > |λ| > λ2, λ1λ2 > 9λ2. (7)

For illustration let us choose at random some specified values for µ2
1, µ

2
2, λ1, λ2 and λ,

which obey the above mentioned inequalities:

µ2
1 = −(4 MeV)2, µ2

2 = (2 MeV)2,
λ1 = 24, λ2 = 1, 8 and λ = −2.

They are the inputs for numerical computations. We first remark that, in addition
to the model parameters, the renormalization introduced another parameter µ, which is
the renormalization scale. Then we must determine a suitable value µ2

0 of µ2 , which is
defined as the real root of the following equation

φ0(µ2, 0)
∣∣
µ2=µ2

0
= 2 MeV,

where φ0(µ2, 0) is a solution of the system of Eqs. (4) and (5) at T = 0. The numerical
computation gives µ0 = 5.657 MeV.

In φ-sector, eliminating φ0 from (4) and (5) leads to
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T1= 4.11 Tc1= 4.88
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Fig. 3. The T evolution of the order parameter φ, in which the broken symmetry
in φ-sector is restored. The phase transition happens in the interval [T1, Tc1]. At
T1, the value φ0 = 0 is in maximum of V (φ0, T ), while the value φ0 = 1.7 MeV
is in minimum. In the interval T1 < T < Tc1, the value φ0 = 0 is in minimum at
V (φ0, T ) = 0, value φ02 is in maximum, and φ01 in minimum. At Tc1, there is an
inflexion point of V (φ0, T ) at φ0 = 0.988 MeV. (see Fig. 4).
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Fig. 4. The evolution of the V (φ0, T ) as a function of the order parameter φ0 for
several temperature steps: T = 4.11, 4.5, 4.7, 4.878, 5.MeV from bottom to top.
At T1, the value φ0 = 0 is in maximum of V (φ0, T ), while the value φ0 = 1.7 MeV
is in minimum. In the interval T1 < T < Tc1, the value φ0 = 0 is in minimum at
V (φ0, T ) = 0, value φ02 is in maximum, and φ01 in minimum (see Fig. 4). At Tc1,
there is an inflexion point of V (φ0, T ) at φ0 = 0.988 MeV.
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for φ0 = 0.
Inserting µ2 = µ2

0 into (8) and then solving numerically this system of equations we
obtain the solutions M1 in Fig. 1, and similar to ψ-sector we have M2 presented in Fig. 2.

The T dependence of the order parameter φ0 is given in Fig. 3. It is observed in
these figures that for 0 < T < T1 ≈ 4.18 MeV a first order phase transition persists. When
T = T1 a second order phase transition emerges and in the interval T1 ≤ T ≤ Tc1 both
phase transitions coexist up to Tc1 ≈ 4.878 MeV, at which

dφ0(T )
dT

∣∣∣∣
T=Tc1

= ∞.

Tc1 is exactly the critical temperature, where the system transform from first order phase
transition to second order one. This phenomenon is highlighted by means of the numerical
computation performed for Vβ[φ0, ψ0 = 0], as function of φ0 at several values of T . It is
easily proved that the curve, corresponding to T = Tc1 = 4.878 MeV in Fig. 4, has
an inflexion point at φ0(Tc1) = 0.998 MeV and V [φ0(Tc1)] = 0.227 MeV. The broken
symmetry is then restored at Tc1.

In order to consider the high temperature ISB in ψ sector the T dependence of
ψ0(T ) for large T are plotted in Fig. 5.
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Fig. 5. The T evolution of the order parameter ψ, in which the symmetry in
ψ-sector is broken. The phase transition happens in the interval [Tc2, T2]. At T2,
the value ψ0 = 0 is in maximum of V (ψ0, T ), while the value ψ0 = 33.1 MeV is
in minimum. In the interval Tc2 < T < T2, the value ψ0 = 0 is in minimum at
V (ψ0, T ) = 0, value ψ02 is in maximum, and ψ01 in minimum. At Tc2, there is an
inflexion point of V (ψ0, T ) at ψ0 = 15.2 MeV. (see Fig. 6).
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Fig. 6. The evolution of the V (ψ0, T ) as a function of the order parameter ψ0

for several temperature steps: T = 200, 212.253, 218, 228, 238.232 MeV from top
to bottom. At T2, the value ψ0 = 0 is in maximum of V (ψ0, T ), while the value
ψ0 = 33.1 MeV is in minimum. In the interval Tc2 < T < T2, the value ψ0 = 0 is
in minimum at V (ψ0, T ) = 0, value ψ02 is in maximum, and ψ01 in minimum (see
Fig. 5). At Tc2, there is an inflexion point of V (ψ0, T ) at ψ0 = 15.2 MeV.

It is evident that the symmetry is broken for T = Tc2 = 212.253 MeV, at which
dψ0(T )
dT

∣∣∣∣
T=Tc2

= ∞.

Tc2 is the critical temperature when the system exhibits simultaneously first and second
order phase transition. It is the temperature for ISB to take place in ψ sector. The
evolution of Vβ[φ0 = 0, ψ0] against ψ0 for different temperatures is shown in Fig. 6. It is
properly asserted that the inflection point of the curve T = Tc2 = 212.253 MeV possesses
coordinates ψ0(Tc2) = 15.230 MeV and Vβ[ψ0(Tc2)] = 789.02 MeV.

IV. CONCLUSION AND DISCUSSION

In this paper the phase transitions were considered for Z2 × Z2 model by means of
the finite temperature CJT effective action. We investigated in detail phase transitions for
a set of parameter chosen at random. The numerical solutions for the gap equations and
the shape of effective potential, as function of order parameters at different temperatures,
exhibit the coexistence of first and second order phase transitions for SNR in φ sector
and ISB in ψ sector. Although the model studied earlier is too simple, but all those we
observed in the preceding section are extremely interesting and their main feature does
not depend on the chosen set of parameters, provided the latter obeys (7), of course. The
generalization toO(M)×O(N)-model is straightforward and produces similar results. Our
present study, in some sense, could be considered to be complementary to those obtained
in [6, 13, 14, 25, 26].
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