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Abstract. We investigate the relaxation rate and mobility of a two-dimensional electron gas (2DEG)
confined in MgZnO/ZnO heterostructures (HSs) for temperaturesT ≤ 300K, taking into account
exchange and correlation effects. We use the variational-subband-wave-function model for car-
rier confinement and assume that the electrons are confined to the lowest subband and scattered by
acoustic phonons via deformation potential (DP) and piezoelectric (PE) fields, polar LO phonons,
interface roughness (IRS), interface charges (IFCs) and the background impurities (BIs). The
calculations are based on the linearized Boltzmann equation (BE) and the relaxation time ap-
proximation, assuming the scattering by acoustic phonons to be quasi-elastic. We consider three
physically distinct temperature ranges with respect to phonon scattering: the Bloch-Grüneisen
(BG), equipartition (EP), and inelastic regimes. In the inelastic regime at high temperatures,
where the scattering from polar LO phonons becomes important, we solve directly the linearized
BE by an iterative method and compare the obtained results with those of the low-temperature and
high-energy relaxation-time approximation. Our calculated low-temperature mobility is in good
agreement with the recent experiment.
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I. INTRODUCTION

ZnO, a direct wide band gap oxide semiconductor with würtzite structure has received great
attention over the past years [1,2]. In particular, transport properties of the 2DEG in MgZnO/ZnO
HSs have been intensively studied for applications in electronic devices [3–8]. Gold [9,10] has in-
terpreted successfully mobility data [11, 12] at low temperatures by introducing charged-impurity
and interface-roughness scattering taking into account the many-body and multiple scattering ef-
fects. Tsaousidou has calculated numerically the acoustic-phonon limited mobility and obtained
the mobility limited by elastic scattering from the experimental data at T = 0.3K [13]. Follow-
ing the treatment of Kawamura and Das Sarma for AlGaAs/GaAs HSs [14], Begum and cowork-
ers [15] have solved the linearized BE using iterative technique and calculated the mobility limited
by the inelastic polar LO phonon and quasi-elastic acoustic (AC) phonons in the EP regime along
with the IFCs, IFR and BIs for MgZnO/ZnO HSs. They have treated the effects of screening of the
2DEG within the random-phase approximation (RPA) without a finite local-field correction (LFC)
describing the exchange-correlation effects beyond the RPA and compared their results with the
experimental data at low temperatures [16]. However, the calculations in the EP regime are valid
only at high temperatures, when phonon energy is negligibly small compared with the thermal
energy of electrons [14], and the LFC is very important for a 2DEG in MgZnO/ZnO HSs because
the interaction parameter rs is much larger compared to the one in AlGaAs/GaAs heterostructures
due to the larger effective mass in ZnO based materials [9-10,13]. Li and coworkers [17] have cal-
culated the mobility of 2DEG in ZnMgO/ZnO HSs in the BG regime, when the acoustic phonon
energy is comparable to the thermal energy of electrons, taking into account exchange and corre-
lation effects. They have, however, considered only the temperature dependence using one form
of the LFC, and have neglected the LO phonon contribution to the total mobility. In this paper, we
apply the calculation of Kawamura and Das Sarma [14] to a 2DEG in MgZnO/ZnO HSs consider-
ing three physically distinct temperature ranges with respect to phonon scattering: the BG, EP, and
inelastic regimes. We take into account exchange and correlation effects using three LFC models,
and study both temperature and density dependence of relaxation rate and mobility. Unlike above
mentioned papers [9,10,13,15,17], we present our theoretical results in more detail for convenient
use in future calculations and interpretations of experimental data.

II. THEORY

II.1. Boltzmann transport equation
We consider a 2DEG confined spatially along the direction perpendicular to the interface

in MgZnO/ZnO HSs, and assume that the electrons can be described by Fang-Howard variational
wave function and occupy only the lowest subband [13–15].

For low electric fields, using the principle of detailed balance, we get the following lin-
earized BE [14],

1 =
A

(2π)2

∫
dk′

1− f0(E ′)
1− f0(E)

[
ϕ(E)− k′ cosθ

k
ϕ(E ′)

]
S(k,k′)
ε2(q,T )

, (1)

where A denotes the area of the plane (xy), S(k,k′) is the differential scattering rate from state k to
state k′, θ is the angle between k and k′, f0(E) is the equilibrium Fermi-Dirac distribution function,
ϕ(E) is the perturbation distribution function and ε(q,T ) is the 2DEG dielectric function. In the
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RPA, ε(q,T ) is given as [14,18]

ε(q,T ) = 1+
2πe2

κw

1
q

FC(q) [1−G(q)]Π(q,T ), (2)

where is κw the static dielectric constant, G(q) is the LFC describing the exchange-correlation
effects beyond the RPA, Π(q,T ) is the polarizability of 2DEG and FC(q) is the form factor asso-
ciated with the subband wave function [14].

The differential scattering rate S(k,k′) depends on scattering mechanism via perturbing
Hamiltonian HI and has the form [21]

S(k,k′) =
2π

h̄

∣∣〈k′|HI|k
〉∣∣2 δ (E ′−E), (3)

for elastic scattering and

S(k,k′) =
2π

h̄

∣∣〈k′,n′Q |HI|k,nQ
〉∣∣2 δ (E ′−E± h̄ωQ), (4)

for phonon scattering. Here Q = (q,qz) and h̄ωQ is the wave-vector and the energy of 3D phonons,
respectively.

II.2. Relaxation time in the elastic regime
For elastic scattering processes such as IFCs, IFR and BIs, the relaxation time is given

by [18, 20]

1
τt(E)

=
m∗

π h̄3

π∫
0

dθ (1− cosθ)

〈∣∣U j(q)
∣∣2〉

ε2(q,T )
, (5)

where
〈∣∣U j(q)

∣∣2〉 is the random potential which depends on the scattering mechanism. For IFCs,
IFR and BIs the corresponding random potentials are given in Refs. [22–24].

Assuming that acoustic phonons do not carry away much energy we can use the quasi-
elastic approximation and obtain the following closed-form forms for

〈∣∣U j(q)
∣∣2〉 in the BG

regime [14] 〈∣∣UBG
j (q)

∣∣2〉=
1
π

+∞

∫
0

dqz
|C j(q,qz)|2

ε2(q,T )
|I (qz)|2∆(E) . (6)

Here,
∆(E) = {nQ [1− f0 (E + h̄ωQ)]+(nQ +1) [1− f0 (E− h̄ωQ)]}

/
[1− f0 (E)], (7)

where nQ is the Bose factor, I (qz) is the overlap integral for intraband scattering [14], and C j(q,qz)
are given by

|CDP(Q)|2 = Ξ2
DPh̄Q
2ρvl

=
Ξ2

DPh̄
√

q2 +q2
z

2ρvl
(8)

for the deformation potential and

|CPEl(Q)|2 = e2h̄
2ρvl

1
Q

Hl(Q), (9)

|CPEt(Q)|2 = e2h̄
2ρvt

1
Q

Ht(Q), (10)
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for the longitudinal PE and transverse PE-coupled scattering, where

Hl(q,qz) =
q2

z

q2 +q2
z

[
h33−ha

q2

q2 +q2
z

]2

, (11)

Ht(q,qz) =
q2

q2 +q2
z

[
h15 +ha

q2
z

q2 +q2
z

]2

, (12)

with ha = h33− hb; hb = h13 + 2h15, hi j being the components of the piezoelectric tensor [25].
Here ΞDP is DP constant, ρ is the mass density, and vl(vt) is the longitudinal (transverse) velocity
of sound in ZnO.

In the EP regime we have h̄ωQ
/
(kBT )� 1 so that nQ ≈ nQ + 1 ≈ kBT

/
(h̄ωQ) >> 1 and

the random potentials reduce to the following forms

〈∣∣UEP
DP (q)

∣∣2〉=
3Ξ2

DPbkBT
16ρv2

l
, (13)〈∣∣UEP

PEl(q)
∣∣2〉=

e2kBT
2ρv2

l

1
q

fl(w), (14)〈∣∣UEP
PEt(q)

∣∣2〉=
e2kBT
2ρv2

t

1
q

ft(w). (15)

Here fl( ft) are the dimensionless form factors for the longitudinal (transverse) acoustic-
phonon modes associated with the piezoelectric coupling defined by

fl(w) =
h2

a

48
(15 f0−33 f1 +12 f2− f3)+

hahb

4
(3 f0−5 f1 + f2)+

h2
b

2
( f0− f1), (16)

ft(w) =
h2

a

48
(3 f0 +3 f1−6 f2 + f3)+

h15ha

4
( f0 + f1− f2)+

h2
15
2
( f0 + f1), (17)

where w = q
/

b and f0, f1, f2, f3 are given in [25].

II.3. Transport in the inelastic regime
As the temperature of the 2DEG is raised, the scattering from polar LO phonons starts to

dominate the transport properties of the 2DEG. The previous simplifications in the evaluation of
the perturbation distribution associated with the quasi-elastic approximation are no longer valid
and the linearized BE must be solved directly. The 2D linearized BE (1) can be written in the form
of a difference equation coupling ϕ(E) with ϕ(E± h̄ω0),

1 = S0(E)ϕ(E)−Sa(E)ϕ(E + h̄ω0)−Se(E)ϕ(E− h̄ω0), (18)

where, So (E) ,Sa (E) and Se (E)are given in [14].
Although no closed-form expressions exists for ϕ(E), a relaxation time may be obtained

under certain approximations [14]. For low enough temperatures,

τT L(E) = S−1
0 (E). (19)

and for higher temperatures,

τHE(E) = 1
/
[S0(E)−Sa(E)−Se(E)]. (20)
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Once the values of ϕ(E) are obtained, the mobility can be calculated from µ = e〈τt(E)〉
/

m∗,
with τt(E) replaced by ϕ(E) and the total mobility are included by the Matthiessen’s rule [13–15].

III. RESULTS AND DISCUSSION

In this section, we present our numerical calculations of the relaxation time τt(E) and
the mobility µ for parameters characteristic of ZnO [15, 16]: m∗ = 0.29me, ρ = 5.67g

/
cm3,

vl = 6.365×105cm/s, vt = 2.735×105cm/s, ΞDP = 15 eV, κw = 8.45, κ∞ = 4.1, h13 =−5.683×
107 V/cm, h15 = −5.108× 107 V/cm, h33 = 1.277× 108 V/cm, and h̄ω0 = 72 meV. Gold and
Tsaousidou [9, 10, 13] have shown that many-body effects are very important for 2DEGs in
MgZnO/ZnO HSs due to large interaction parameter rs. Therefore, we take into account exchange
and correlation effects using a LFC G(q). In the Hubbard approximation, only exchange effects

are taken into account and the LFC has the form GH (q) = q
/(

2
√

q2 + k2
F

)
[9,10,18]. We also use

analytical expressions of the LFC (GGA) according to the numerical results obtained in Ref. [19]
where both exchange and correlation effects are taken into account

GGA(q) = r4/3
s

1.402q√
2.644C2

1q2
s +C2

2r4/3
s q2−C3r2/3

s qsq
, (21)

with qs = 2
/

a∗, a∗ = h̄2
κw
/
(m∗e2) is Bohr radius and rs = 1

/√
Nsπ(a∗)2 is the Wigner–Seitz

parameter; the three coefficients Ci(i = 1,2,3) are quoted from Ref. [19]. In the following, we use
a vanishing depletion density Ndepl = 0 as in Ref. [9].

III.1. Relaxation rate and mobility due to scattering from AC phonons
Using the quasi-elastic approximation for acoustic phonons, we have calculated the energy

dependence of the EP and BG relaxation rates for the DP and PE phonons in different G(q) models.
The results shown in figures 1 and 2 indicate that the EP and BG relaxation rates are similar at
high temperatures as expected and the exchange and correlation effects are significant.

To assess the validity of the EP approximation we show in Fig. 3 the temperature de-
pendence of the BG (solid lines) and EP (dashed lines) mobility µ due to acoustic phonons at
Ns = 6.8×1010 cm−2 and 1.7×1011 cm−2 for different G(q) models. We see that the EP approx-
imation underestimates the mobility at low temperatures since EP tends to overestimate the Bose
factor for acoustic phonons. The transition into the BG regime happens at a higher temperature
for higher densities, in accordance with the rough estimates kBTBG ≈ 2kF h̄vlgiven in [14]. The
exchange and correlation effects on the mobility are considerable at low temperatures and become
less important at high temperature.

III.2. Mobility in the inelastic regime
In order to understand the importance of the LO phonon scattering, we have solved the BE

using the iteration technique. Based on obtained perturbation function ϕ−1(E), low-temperature
relaxation rate τ

−1
LT (E) and high-energy relaxation rate τ

−1
HE(E), we have calculated the recipro-

cal phonon limited mobility. In Fig. 4 we show a comparison of the mobility calculated via the
iterative scheme with that calculated from the closed-form relaxation rate approximations. It is
seen from the figure that at room temperature the low-temperature relaxation rate τ

−1
LT (E) under-

estimates and the high-energy relaxation rate τ
−1
HE(E) overestimates the true mobility. However, in
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Fig. 1. Energy dependence of the EP and BG relaxation rates due to the DP phonons for
two values of carrier density at two temperatures in different G(q) models.

contrary to the case of AlGaAs/GaAs HSs [14], the deviation of τ
−1
HE(E) from the iterative value is

much larger than that of τ
−1
LT (E). We also observe that the scattering from LO phonons is important

only for T > 150K when the total mobility µ differs notably from µac.

III.3. Mobility due to the scattering by phonons and defects
To find the key scattering mechanism limiting the mobility of real samples, we show in

Fig. 5 the variation of the total mobility µ and individual contributions, calculated in the RPA,
with electron concentration assuming electrons to be scattered by inelastic polar LO phonons, DP
phonons, PE phonons, IFR, BIs and IFCs. We see that at very low temperatures the IFR determines
the mobility for high density and at room temperature the polar LO phonon scattering dominates
for all concentrations considered. The density dependence of the total mobility is stronger at lower
temperatures.

In figures 6 and 7 we show the total mobility µ and individual contributions versus tem-
perature for two values of electron densitywith all many-body effects included. We compare our
calculations with the recent available experimental data of Falson et al. [16]. Note that, from
above discussion, the LO phonon contribution is negligible for T < 20 K, only acoustic phonons
are taken into account in figures 6 and 7. We see that our results for the total mobility calculated
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Fig. 2. Energy dependence of the EP and BG relaxation rates due to the PE phonons for
two values of carrier density at two temperatures in different G(q) models.

Fig. 3. Temperature dependence of the BG (solid lines) and EP (dashed lines) mobility
µ due to acoustic phonons for different G(q) models.

from the full form for the relaxation rates including many-body effects (solid lines denoted by
Total12) are in good agreement with the experimental data [16] for temperature range and electron
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Fig. 4. The reciprocal mobility limited by acoustic and polar LO phonons (solid line)
and approximations based on the low-temperature relaxation rate τ

−1
LT (E) (dashed line)

and the high-energy relaxation rate τ
−1
HE(E) (dotted line). The dashed-dotted line is the

reciprocal acoustic-phonon limited mobility τ−1
ac (E).

Fig. 5. Variation of the total mobility µ and individual contributions vs electron con-
centration with G(q) = 0; ∆ = 2.2 Å; Λ = 22 Å; NB1 = 1013 cm−3; NB2 = 1012 cm−3;
NIFC = 5×107 cm−2 for (a) T = 6 K and (b) T = 300 K.

concentrations considered. The EP approximation (the lines denoted by Total13) underestimates
the total mobility at low temperatures as expected. Note that the IRS parameters, interface im-
purity density NIFC and background doping levels NB1, NB2 were chosen to fit approximately the
experimental data given in Ref. [16].

IV. CONCLUSION

In summary, we have investigated the transport properties of the 2DEG in MgZnO/ZnO
HSs considering elastic scattering from IRS, IFCs and BIs, quasi-elastic scattering from DP and
PE-coupled acoustic phonons, and the inelastic scattering from the polar LO phonons. The lin-
earized BE is solved using the relaxation time approximation for acoustic phonons and the iter-
ation method for LO polar phonons. We have shown that the BG relaxation rates and mobility
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Fig. 6. Variation of the total mobility µ and individual contributions vs temperature with
G(q) = GGA(q), NIFC = 5× 107 cm−2, NB1 = 1013 cm−3 for (a) Ns = 6.8× 1010 cm−2,

∆ = 2.8 Å, Λ = 30
o
A, NB2 = 2× 1012 cm−3 and (b) Ns = 1.7× 1011 cm−2, ∆ = 2.2 Å,

Λ = 22 Å, NB2 = 1012 cm−3. The solid dots represent the experimental results
of Ref. [16].

Fig. 7. Variation of the total mobility µ and individual contributions vs temperature with
G(q) =GGA(q), NIFC = 5×107 cm−2, for four samples: (a) Ns = 2×1012 cm−2, ∆= 2 Å,
Λ = 15 Å, NB1 = 1014 cm−3 NB2 = 1013 cm−3; (b) Ns = 7× 1011 cm−2, ∆ = 2.2 Å,
Λ = 22

o
A, NB1 = 7×1013 cm−3 NB2 = 1013 cm−3; (c) Ns = 4.5×1011 cm−2, ∆ = 2.4

o
A,

Λ = 21 Å, NB1 = 5× 1013 cm−3 NB2 = 5× 1012 cm−3 and (d) Ns = 1.4× 1011 cm−2,
∆ = 2 Å, Λ = 15 Å, NB1 = 1013 cm−3 NB2 = 1012 cm−3. The solid dots represent the
experimental results of Ref. [16].

are similar to those calculated using the EP approximation at high temperatures as expected. It is
found that the exchange and correlation effects on the relaxation rates and mobility are significant
at low densities. We also find that at very low temperatures the IFR determines the mobility for
high density and at room temperature the polar LO phonon scattering dominates for all concentra-
tions considered. Using the full form for the relaxation rates of acoustic phonons and taking into
account many-body effects we obtain a good agreement with recent experiment [16].
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