Communications in Physics, Vol. 24, No. 3S1 (2014), pp. 57-63 DOI:10.15625/0868-3166/24/3S1/5146

CHARACTERIZATION OF STRUCTURAL AND ELECTROCHROMIC PROPERTIES OF NANOCOMPOSITE TiO₂ – WO₃ FILMS

DANG HAI NINH, TRAN THI THAO, AND NGUYEN NANG DINH

University of Engineering and Technology, Vietnam National University, Hanoi PHAM DUY LONG Institute of Materials Science, Vietnam Academy of Science and Technology

E-mail: dinhnn@vnu.edu.vn

Received 04 April 2014 Accepted for publication 24 May 2014

Abstract. Using doctor-blade technique, followed by electrochemical deposition, nanocomposite WO₃-TiO₂ films were prepared. Structure, morphology and composition ratio of the nanocomposite films were characterized by a comprehensive analyzing the SEM, EDX, XRD and Raman scattering results. The reversible coloration and bleaching of TiO₂/ITO and WO₃-TiO₂/ITO electrodes were demonstrated. The ECD coloration efficiency of WO₃-TiO₂/ITO was found to be much larger (55.1 cm² × C⁻¹) than that of TiO₂/ITO (34.3 cm² × C⁻¹). The resulting nanostructured composites enables the coloration efficiency of the WO₃-TiO₂ film to be considerably improved. The results suggest a potential application of the nanocomposites of two electrochromic oxides in large-area energy-efficiency (or smart) windows.

Keywords: electrochromic display (ECD), electrochemical deposition, SEM and EDX, XRD and Raman scattering, coloration efficiency.

I. INTRODUCTION

Electrochromic display (ECD) has been investigated extensively in the last decades because of its potential applications in light controlling, energy-efficient or smart windows [1]. ECD properties can be found in almost all the transition-metal oxides and they can be coloured anodically (Ir, Ni) or cathodically (W, Ti) [1–3]. Recently Granqvist *et al* [4] have made a comprehensive review of nanomaterials for benign indoor environments. In this report, the authors show the characteristic data for a 5×5 cm² flexible ECD foil incorporating WO₃, and NiO modified by the addition of a wide bandgap oxide such as MgO or Al₂O₃, PMMA-based electrolyte, and ITO films. To improve further the electrochromic properties, Ti-doped WO₃ films were deposited by co-sputtering metallic titanium and tungsten in an Ar/O₂ atmosphere [5]. Another way to improve electrochromic properties of thin films is to use nanostructured crystalline films. For instance, nanocrystalline WO₃ films were prepared by the organometallic chemical vapour deposition (OMCVD) method using tetra(allyl)tungsten. The size of grains found in these films was estimated by atomic force microscope (AFM) and scanning electron microscope (SEM) to be $20 \div 40$ nm. The coloration time of WO₃ deposited on indium-tin-oxides (ITO) substrates (WO₃/ITO) in 2M HCl was less

©2014 Vietnam Academy of Science and Technology

than 1 sec and the maximum coloration efficiency at 630 nm was ca. $22 \text{ cm}^2 \times \text{C}^{-1}$ [6]. However, the HCl electrolyte is not suitable for practical use. The nanocrystalline TiO₂ anatase thin films on ITO prepared by sol-gel dipping method exhibited a good reversible coloration and bleaching process [7]. By using a so-called "doctor blade" method, nano-porous TiO₂ and mixed TiO₂/WO₃ films were prepared for the ECD with much improved electrochromic response time and coloration efficiency [8]. In present work, we combined the doctor-blade technique for preparing TiO₂ films with an electrochemical process for depositing WO₃ into the nano-porous TiO₂ films, with the aim to reveal structural and electrochromic properties of the mixed oxides films which contains numerous nanostructured heterojunctions of TiO₂/WO₃.

II. EXPERIMENTAL

To deposit nanoporous TiO₂films, a "doctor blade" technique was used following the process reported in [3]. A glass slide overcoated with a 0.2 μ m thick ITO film having a sheet resistance of 10 Ω/\Box and a transmittance of 90% was used as a substrate; the useful area that constitutes the sample studied was of 1 cm². A colloidal solution of 15 wt% nanoparticles (15 nm in size) of titanium oxide (Nyacol Products) in water was used. For producing thinner films we added more distilled water to get ca. 5 wt% TiO₂ and a few drops of the liquid surfactant were added. Then the diluted solution was filled in the slot on the ITO electrode and spread along the tapes. The samples were left for drying during 15 min, then put to a furnace maintained at 450°C for 1 hour to re-crystallize the nc-TiO₂ films. To prepare WO₃-TiO₂ on to ITO films (further shortly called WTO), the peroxy-tungsten acid solution (H₂W₂O₁₁) was prepared. For this 4.6 g of high-purity metallic tungsten powder was dissolved in 25 ml H₂O₂ (30%). The detailed process of the electrochemical deposition can be seen elsewhere [8]. By using potentiostat "Autolab. PGS - 30" a potentiostatic method was chosen for film deposition. After their deposition, the films were dried in nitrogen gas. Thickness of the WTO films is about 500 nm

The surface morphology and Energy Dispersive X-ray Spectroscopy (EDX) measurements were examined with the help of a field-emission scanning electron microscope (FE-SEM). X-ray diffraction analysis (XRD) and Raman scattering spectra (RSS) were done on a Brucker "Advance-8D" X-ray diffractometer and Lambram-1B, respectively. Electrochemical processes were carried-out on the same potentiostat Autolab. PGS - 30, using solutions of 1 M LiClO₄ + Propylene carbonate (PC)... All measurements were executed at room temperature.

By using a JASCO "V-570" photospectrometer, *in situ* transmittance spectra of both the nc-TiO₂/ITO and WTO/ITO in LiClO₄+PC vs. bias potential were recorded on the working electrode mounted in a modified electrochemical cell which was placed under the pathway of the laser beam, and the three cell electrodes were connected to a potentiostat.

III. RESULTS AND DISCUSSION

III.1. SEM and EDX analysis

Fig. 1 shows a SEM micrograph of a WTO sample deposited onto porous- TiO_2/ITO for 600 s. Different places in the depth of the sample are marked by "Spectrum" for EDX measurements; the obtained EDX data are listed in Table 1.

It is known that with the insertion of the Li^+ one can obtain the ECD coloration [1], whereas the insertion of W^{6+} during the electrochemical deposition would result in the insertion of WO₃

into the nano-pores in the porous TiO_2 films. Fig. 1 shows the SEM of the surface of the TiO_2 electrode after the electrochemical process in the $H_2W_2O_{11}$ solution. During the deposition, we observed that the TiO_2/ITO electrode was coloured and became deep-blue with the increase of the deposition time. This coloration can be attributed to the insertion of W^{6+} (the ions from the $H_2W_2O_{11}$ electrolyte) into the TiO_2 films according to the following equation:

$$TiO_2(transparent) + xW^{3+} + xe^- \to W_xTiO_2(blue)$$
(1)

where W^{6+} plays the role of Li⁺ in formation of the coloration state of Li_xTiO₂ [9].

Hereby, simultaneously with the ECD coloration, one can deposit WO_3 into nanoporous-TiO₂ to form a film with heterojunctions of WO_3/TiO_2 .

Fig. 1. SEM micrograph of WO₃-TiO₂/ITO deposited in $H_2W_2O_{11}$ solution, at a potential of - 3,5V/SCE for 600 s.

Table 1. EDX data on the composition (at%) of chemical elements from the top to bottom in the WTO film (deposition time t = 600 s).

No.	Marked place	0	Ti	In	Sn	W	Total
1	Spectrum 4	30.89	7.82	2.46	1.25	57.58	100.00
2	Spectrum 6	35.13	10.36	0.74	0.16	53.61	100.00
3	Spectrum 8	32.56	12.19	1.40	1.07	52.78	100.00
4	Spectrum 5	32.77	12.48	2.47	1,16	51.12	100.00
5	Spectrum 2	33.88	13.58	2.66	1.29	48.59	100.00
6	Spectrum 7	33.82	17.38	2.13	1.47	45.20	100.00
7	Spectrum 3	31.95	19.49	2.58	1.67	44.31	100.00
8	Spectrum 1	33.98	22.12	2.04	1.37	40.49	100.00

From Table 1 one can see that, besides W, Ti and O elements of WO_3 and TiO_2 , there were observed also In and Sn from ITO substrate. Although the presence of In, Sn and O of ITO affected

to the results of EDX, qualitatively one can estimate the composition distribution as follows. The total content of Ti and W is around 63 at%, Ti and W contents are compensated each by other in every places. Indeed, "Spectrum 4" is on the top of sample surface has the largest W-content, namely 57.58 at% and decreases to 40.49 at%, corresponding to "Spectrum 1", the deepest place in the film. Whereas, Ti-content is the largest in "Spectrum 1" (22.12 at%) and decreases to 7.82 at% (the smallest value) in "Spectrum 4". This proves that the volume of WO₃ decreased from the top to the bottom of the WTO film.

III.2. XRD and RSS analysis

The crystalline structure of the films was confirmed by using an accessory for films with a small angle of the X-ray incident beam. For such a thick film of TiO₂, all XRD patterns of the ITO substrate do not appear (Fig. 2). In XRD patterns there are 10 intensive peaks: 4 peaks belong to anatase TiO₂ [10] and 6 peaks belong to WO₃ [11]. The fact that the peak width is rather large shows that the TiO₂ film was crystallized into small grains. To obtain the grain size τ we used the Scherrer formula:

$$\tau = \frac{0.9 \times \lambda}{\beta \times \cos \theta} \tag{2}$$

where λ is wavelength of the X-ray used ($\lambda = 0.154$ nm), β the peak width of half height in radians and θ the Bragg angle of the considered diffraction peak [12]. From the XRD patterns the average half-height peak width of the grains was found to be $\beta = 0.0055$, consequently the size of grains was determined as $\tau \approx 30$ nm. For 6 peaks of WO₃, the average size estimated by formula (2) is the same as the size of pores in the nc-TiO₂, namely about 20 – 25 nm. This result demonstrates that the nano-pores of the porous nc-TiO₂ film were filled-up with WO₃.

Fig. 2. XRD of a WO_3 -Ti O_2 mixture (WTO) film made by electrochemical deposition of WO_3 onto "doctor-blade" nc-Ti O_2 .

To reveal RSS of the WO₃-TiO₂/ITO film we recorded RSS of WO₃/ITO with a thickness of WO₃ of 300 nm (Fig. 3). In this RSS there were also observed Raman bands of ITO at 196 cm⁻¹

and 377 cm⁻¹ as reported in [7]. The other peaks correspond to Raman bands of crystalline (c-WO₃) and amorphous (a-WO₃) phases. Band at 986 cm⁻¹ is of W=O bond (with W⁺⁴) [13]. The RSS shows the multi-valence of W ranging from 4 to 6. Both the crystalline and amorphous WO₃ possess good electrochromic properties, however c-WO₃ exhibits a better ECD in transmission regime, on contrary a-WO₃ - is better ECD in reflection regime [1]. In Fig. 4 there are two Raman spectra, one is of RSS of anatase TiO₂/ITO and the other is of WO₃/TiO₂/ITO.

Fig. 3. Raman spectrum of WO₃/ITO film deposited for 600 s.

Fig. 4. Raman spectra of the TiO₂/ITO (curve "1") and WO₃/TiO₂/ITO film (curve "2")

Besides a large volume of WO₃ that is filled-up in nc-TiO₂, the WO₃ layer deposited on the TiO₂ surface is very thin (~ 50 nm). Thus RSS bands of TiO₂ appeared intensively, while in the RSS of WO₃ only two bands appeared (namely at 638 and 986 cm⁻¹). For TiO₂, the strongest band (147 cm⁻¹) corresponds to the bandgap (E_g) mode. Note that bulk anatase TiO₂ has the E_g peak of 143 cm⁻¹. The fact that E_g peak shifted to a larger wavenumber range again proves that TiO₂ was crystallized in nanoparticles form [14]. The results of XRD, EDX and RSS showed that by electrochemically depositing WO₃ onto nanoporous TiO₂, one can prepare nanocomposites of WO₃ and TiO₂ with numerous heterojunctions of two wide bandgap semiconductors. Both the TiO₂ and WO₃ are the anodic electrochromic materials. Thus it may be expected that ECD devices made from the WTO films would have an enhanced electrochromic performance.

III.3. Electrochromic performance

To compare electrochromic performance two working electrodes (WE) such as TiO_2/ITO and WTO/ITO, we measured *in-situ* transmittance of the WE at polarized potentials. Fig. 5 shows the transmittance of these electrodes filled in 1 M LiClO₄ + PC at polarizing bias potentials (from – 2.5 V/SCE to + 1.5 V/SCE). The bleaching and coloration processes were measured under the application of negatively (i.e. – 2.5 V/SCE) and positively polarized (i.e. + 1.5 V/SCE) potential to the WE, respectively. These processes were clearly associated with the Li⁺ insertion (extraction) from the LiClO₄+PC electrolyte into (out of) the TiO₂/ITO and WO₃/TiO₂/ITO electrodes.

Above-mentioned results for the ECD properties of WTO films that contain nano-heterojunctions of WO_3/TiO_2 demonstrate that the efficient coloration were achieved due to a double

Fig. 5. Transmittance spectra of TiO_2/ITO and WTO/ITO (WO₃/TiO₂/ITO) electrodes filled in 1M LiClO₄ + PC solution with polarized potential ranging from -2.5 V/SCE to + 1.5 V/SCE: Curves 1 and 2 correspond to bleaching state of TiO_2/ITO and WTO/ITO; curves 3 and 4 correspond to coloration state of TiO_2/ITO and WTO/ITO, respectively.

coloration process according to following reactions in the WE:

$$TiO_2(transparent) + x(Li^+ + e^-) \rightarrow Li_xTiO_2 (blue),$$
(3)

$$WO_3(transparent) + x(Li^+ + e^-) \rightarrow Li_xWO_3$$
 (blue). (4)

To evaluate the electrochromic coloration efficiency (η) we used a well-known expression relating the efficiency with the optical density (ΔOD), consequently the transmittances of coloration (T_c) and bleaching states (T_b), and the insertion charge (Q), as follows [15]:

$$\eta = \frac{\Delta OD}{Q} = \frac{1}{Q} \ln \left(\frac{T_b}{T_c} \right),\tag{5}$$

At a wavelength of 550 nm - the largest sensitivity of human eyes, $Q_{in} = 21 \text{ mC} \times \text{cm}^{-2}$ (taken from the electrochemical measurements), for TiO₂/ITO: $T_b = 72\%$ and $T_c = 35\%$; for WTO/ITO: $T_b = 70\%$ and $T_c = 22\%$. Using formula (5), the coloration efficiency was determined to be $\eta_1 = 34.3 \text{ cm}^2 \times \text{C}^{-1}$ and $\eta_2 = 55.1 \text{ cm}^2 \times \text{C}^{-1}$ for TiO₂/ITO and WTO/ITO, respectively. Herein, η_1 is almost the same value as reported in [3] for TiO₂/FTO, whereas η_2 obtained in this work is larger than that of WO₃/TiO₂/ITO electrode, as reported in [8] (35.7 cm² × C⁻¹). This is because the WTO film (500 nm) is thinner than the WO₃/TiO₂ film (570 nm). It is clearly seen that WTO/ITO electrode possesses much larger electrochromic efficiency than the one of TiO₂/ITO. For both electrodes, the larger is the wavelength, the higher is the coloration efficiency. In the visible range of wavelengths all the values of η of WTO/ITO are found to be comparable to those for WO₃ films [16] and much higher than those for TiO₂ films prepared by sol-gel technique [7] and titanium-lanthanide oxides deposited by magnetron sputtering and coloured in a LiClO₄ + PC solution [17].

IV. CONCLUSION

Composite films from nano TiO_2 and WO_3 were prepared by electrochemical deposition of WO_3 onto "doctor-blade" nc-TiO₂/ITO films. Combining characterization methods such as

SEM, EDX, XRD and Raman scattering, the structure and compound of the nanocomposite films were revealed. In these composite films, the pores in nano-porous TiO₂ were filled-up with WO₃, consequently creating numerous heterojunctions of two anodic electrochromic materials of nc-TiO₂ and nc-WO₃. The reversible coloration and bleaching process of WO₃/TiO₂ and WTO/ITO based electrochromic devices was demonstrated. The ECD coloration efficiency of TiO₂/ITO and WTO/ITO was found to be as large as 34.3 cm² × C⁻¹ and 55.1 cm² × C⁻¹, respectively. The resulting nanostructured film enables the coloration efficiency of the working electrodes to be considerably improved. Since a large-area WO₃/TiO₂ electrode can be prepared by the doctor blade method, followed by an electrochemical deposition, this type of electrodes constitutes a good candidate for smart window applications, taking advantage of its excellent properties in terms of ECD efficiency and electrochemical stability as well as the simplicity of the fabrication process.

ACKNOWLEDGEMENTS

This research was funded by the Vietnam National Foundation for Science and Technology (NAFOSTED) under grant number "103.02-2013.39".

Infrastructure and equipment provided for samples preparation, XRD patterns, transmittance spectra, electrochromic performance measurements were made possible in the VNU project on "Nanotechnology and Application" supported by the Vietnamese Government. We would like to thank Assoc. Prof. Nguyen Xuan Nghia and Assoc. Prof. Le Hong Lien (Institute of Materials Science, VAST) for Raman measurements and SEM with EDX, respectively.

REFERENCES

- [1] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 1995.
- [2] L. Meda, R. C. Breitkopf, T. E. Haas and R. U. Kirss, Thin Solid Films 402 (2002) 126.
- [3] N. N. Dinh, N. M. Quyen, D. N. Chung, M. Zikova, and Vo-Van Truong, Sol. Energy Mat. Sol. Cells 95 (2011) 618.
- [4] C. G. Granqvist, A. Azens, P. Heszler, L. B. Kish, and L. Österlund, Sol. Energy Mater. Sol. Cells 91 (2007) 355.
- [5] A. Karuppasamy and A. Subrahmanyam, *Thin Solid Films* **516** (2007) 175.
- [6] G. Beydaghyan, G. Bader, and P.V. Ashrit, Thin Solid Films 516 (2008) 1646.
- [7] N. N. Dinh, N. Th. T. Oanh, P. D. Long, M. C. Bernard, and A. Hugot-Le Goff, *Thin Solid Films* 423 (2003) 70. VJS site
- [8] N. N. Dinh, D. H. Ninh, T. T. Thao, and Truong Vo-Van, J. Nanomat. 2012 (2012) 781236, DOI:10.1155/2012/781236
- [9] G. Campet, J. Portier, S. J. Wen, B. Morel, M. Bourrel, and J. M. Chabagno, Active and Passive Elec. Comp. 14 (1992) 225.
- [10] D. A. H. Hanaor; S. C. Charles, J. Mater. Sci. 46/4 (2011) 855.
- [11] E. Lassner, W.-D. Schubert. Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, New York: Kluwer Academic - 1999. ISBN 0-306-45053-4
- [12] B. D. Cullity, *Elements of X-Ray Diffraction*, 2nd ed., p. 102. Addison, Wesley Publishing Company, Inc., Reading, MA, 1978.
- [13] S. I Cordoba de Torresi, A. Gorenstein, R. M. Torresi and M. V. Vazquez, J. Electroanal. Chem. 318 (1991) 131.
- [14] P. Falaras, A. Hugot-Le Goff, M. C. Bernard, and A. Xagas, Sol. Energy Mater. Sol. Cells 64 (2000) 167.
- [15] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, *Electrochromism: Fundamentals and Applications*, VCH, Weinheim - New York - Basel - Cambridge - Tokyo, 1995.
- [16] P. Delichere, P. Falaras, and A. Hugot-Le Goff, Solar Energy Materials 19 (1989) 323.
- [17] L. Kullman, A. Azens, and C. Granqvist, J. Appl. Phys. 81 (1997) 8002.